125 research outputs found

    Modelling sulphate stream concentrations in the Black Forest catchments Schluchsee and Villingen

    No full text
    International audienceThe sulphate (SO4) released by mineralisation and desorption from soil can play an important role in determining concentrations of SO4 in streams. The MAGIC model was calibrated for two catchments in the Black Forest, Germany (Schluchsee and Villingen) and SO4 concentrations in the streams for the years 2016 and 2030 were predicted. Special emphasis was placed on the dynamics of soil sulphur (S) pools. At Schluchsee, 90% of soil S is stored in the organic S (Sorg) pool, whereas at Villingen, 54% is in the inorganic (Sinorg) pool. The Villingen stream chemistry was modelled successfully by measured Langmuir isotherm parameters (LIPs) for Sinorg. Schluchsee data could not be modelled satisfactorily using measured or freely adapted LIPs only, as the Sinorg pool would have to be more than five times larger than what was measured. With 60.5 mmolc SO4 m-2 yr-1 as internal soil source by mineralisation and the measured LIPs, stream data was modelled successfully. The modelling shows that in these two catchments pre-industrial concentrations of SO4 in runoff can be reached in the next two decades if S deposition decreases as intended under currently agreed national and international legislation. Sorg is the most likely dominant source of SO4 released at Schluchsee. Mineralization from the Sorg pool must be included when modelling SO4 concentrations in the stream. As the dynamics and the controlling factors of S release by mineralisation are not yet clear, this process remains a source of uncertainty for predictions of SO4 concentrations in streams. Future research should concentrate on dynamics of S mineralisation in the field, such that mathematical descriptions of long-term S-mineralisation can be incorporated into biogeochemical models. Keywords: sulphate release, organic S, mineralisation, acidification, recovery, modelling, MAGIC, catchments, predictions, Germany, fores

    High resolution coherent population trapping on a single hole spin in a semiconductor

    Get PDF
    We report high resolution coherent population trapping on a single hole spin in a semiconductor quantum dot. The absorption dip signifying the formation of a dark state exhibits an atomic physics-like dip width of just 10 MHz. We observe fluctuations in the absolute frequency of the absorption dip, evidence of very slow spin dephasing. We identify this process as charge noise by, first, demonstrating that the hole spin g-factor in this configuration (in-plane magnetic field) is strongly dependent on the vertical electric field, and second, by characterizing the charge noise through its effects on the optical transition frequency. An important conclusion is that charge noise is an important hole spin dephasing process

    The utilization of an ultrasound-guided 8-gauge vacuum-assisted breast biopsy system as an innovative approach to accomplishing complete eradication of multiple bilateral breast fibroadenomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ultrasound-guided vacuum-assisted breast biopsy technology is extremely useful for diagnostic biopsy of suspicious breast lesions and for attempted complete excision of appropriately selected presumed benign breast lesions.</p> <p>Case presentation</p> <p>A female patient presented with 16 breast lesions (eight within each breast), documented on ultrasound and all presumed to be fibroadenomas. Over a ten and one-half month period of time, 14 of these 16 breast lesions were removed under ultrasound guidance during a total of 11 separate 8-gauge Mammotome<sup>® </sup>excision procedures performed during seven separate sessions. Additionally, two of these 16 breast lesions were removed by open surgical excision. A histopathologic diagnosis of fibroadenoma and/or fibroadenomatous changes was confirmed at all lesion excision sites. Interval follow-up ultrasound imaging revealed no evidence of a residual lesion at the site of any of the 16 original breast lesions.</p> <p>Conclusion</p> <p>This report describes an innovative approach of utilizing ultrasound-guided 8-gauge vacuum-assisted breast biopsy technology for assisting in achieving complete eradication of multiple bilateral fibroadenomas in a patient who presented with 16 documented breast lesions. As such, this innovative approach is highly recommended in similar appropriately selected patients.</p

    Broadband, Polarization-Sensitive Photodetector Based on Optically-Thick Films of Macroscopically Long, Dense, and Aligned Carbon Nanotubes

    Get PDF
    Increasing performance demands on photodetectors and solar cells require the development of entirely new materials and technological approaches.Wereport on the fabrication and optoelectronic characterization of a photodetector based on optically-thick films of dense, aligned, and macroscopically long single-wall carbon nanotubes. The photodetector exhibits broadband response from the visible to the mid-infrared under global illumination, with a response time less than 32 ms. Scanning photocurrent microscopy indicates that the signal originates at the contact edges, with an amplitude and width that can be tailored by choosing different contact metals. A theoretical model demonstrates the photothermoelectric origin of the photoresponse due to gradients in the nanotube Seebeck coefficient near the contacts. The experimental and theoretical results open a new path for the realization of optoelectronic devices based on three-dimensionally organized nanotubes

    Microcavity-integrated graphene photodetector

    Get PDF
    The monolithic integration of novel nanomaterials with mature and established technologies has considerably widened the scope and potential of nanophotonics. For example, the integration of single semiconductor quantum dots into photonic crystals has enabled highly efficient single-photon sources. Recently, there has also been an increasing interest in using graphene - a single atomic layer of carbon - for optoelectronic devices. However, being an inherently weak optical absorber (only 2.3 % absorption), graphene has to be incorporated into a high-performance optical resonator or waveguide to increase the absorption and take full advantage of its unique optical properties. Here, we demonstrate that by monolithically integrating graphene with a Fabry-Perot microcavity, the optical absorption is 26-fold enhanced, reaching values >60 %. We present a graphene-based microcavity photodetector with record responsivity of 21 mA/W. Our approach can be applied to a variety of other graphene devices, such as electro-absorption modulators, variable optical attenuators, or light emitters, and provides a new route to graphene photonics with the potential for applications in communications, security, sensing and spectroscopy.Comment: 19 pages, 4 figure

    Waveguide Coupled Resonance Fluorescence from On-Chip Quantum Emitter

    Get PDF
    Resonantly driven quantum emitters offer a very promising route to obtain highly coherent sources of single photons required for applications in quantum information processing (QIP). Realizing this for on-chip scalable devices would be important for scientific advances and practical applications in the field of integrated quantum optics. Here we report on-chip quantum dot (QD) resonance fluorescence (RF) efficiently coupled into a single-mode waveguide, a key component of a photonic integrated circuit, with a negligible resonant laser background and show that the QD coherence is enhanced by more than a factor of 4 compared to off-resonant excitation. Single-photon behavior is confirmed under resonant excitation, and fast fluctuating charge dynamics are revealed in autocorrelation g(2) measurements. The potential for triggered operation is verified in pulsed RF. These results pave the way to a novel class of integrated quantum-optical devices for on-chip quantum information processing with embedded resonantly driven quantum emitters

    Linking rhizosphere processes across scales: opinion

    Get PDF
    Purpose: Simultaneously interacting rhizosphere processes determine emergent plant behaviour, including growth, transpiration, nutrient uptake, soil carbon storage and transformation by microorganisms. However, these processes occur on multiple scales, challenging modelling of rhizosphere and plant behaviour. Current advances in modelling and experimental methods open the path to unravel the importance and interconnectedness of those processes across scales. Methods: We present a series of case studies of state-of-the art simulations addressing this multi-scale, multi-process problem from a modelling point of view, as well as from the point of view of integrating newly available rhizosphere data and images. Results: Each case study includes a model that links scales and experimental data to explain and predict spatial and temporal distribution of rhizosphere components. We exemplify the state-of-the-art modelling tools in this field: image-based modelling, pore-scale modelling, continuum scale modelling, and functional-structural plant modelling. We show how to link the pore scale to the continuum scale by homogenisation or by deriving effective physical parameters like viscosity from nano-scale chemical properties. Furthermore, we demonstrate ways of modelling the links between rhizodeposition and plant nutrient uptake or soil microbial activity. Conclusion: Modelling allows to integrate new experimental data across different rhizosphere processes and scales and to explore more variables than is possible with experiments. Described models are tools to test hypotheses and consequently improve our mechanistic understanding of how rhizosphere processes impact plant-scale behaviour. Linking multiple scales and processes including the dynamics of root growth is the logical next step for future research.Natural Environment Research Council (NERC): NE/S004920/

    On-chip picosecond pulse detection and generation using graphene photoconductive switches

    Get PDF
    We report on the use of graphene for room temperature on-chip detection and generation of pulsed terahertz (THz) frequency radiation, exploiting the fast carrier dynamics of light-generated hot carriers, and compare our results with conventional low-temperature-grown gallium arsenide (LT-GaAs) photoconductive (PC) switches. Coupling of picosecond-duration pulses from a biased graphene PC switch into Goubau line waveguides is also demonstrated. A Drude transport model based on the transient photoconductance of graphene is used to describe the mechanism for both detection and generation of THz radiation
    corecore