99 research outputs found
SPINAL MUSCLE ACTIVITY DURING DIFFERENT RUGBY SCRUM ENGAGEMENT PROCEDURES
Biomechanical studies of rugby union scrummaging have focussed on kinetic and kinematic analyses, whilst muscle activation strategies employed by front row players during scrummaging are still unknown. The aim of this study was to investigate the activity of the sternocleidomastoid, upper trapezius and erector spinae muscles during machine and live scrums. Nine male front-row forwards scrummaged individually against a scrum machine under „crouch-touch-set? and „crouch-bind-set? conditions, and against a two-player opposition in a simulated live condition. Results suggest that the pre-bind technique, may effectively prepare the cervical spine by stiffening joints before the impact phase. Additionally, machine scrummaging does not replicate the muscular demands of live scrummaging for the erector spinae
Musculoskeletal modelling of the human cervical spine for the investigation of injury mechanisms during axial impacts
This is the final version. Available from Public Library of Science via the DOI in this record.All relevant data are available at Figshare [https://figshare.com/projects/SILVESTROS_PLOS_ONE_SUPPORTING_DOCUMENTS/58280] and musculoskeletal models and relevant project information is available on the OpenSim SimTK repository [https://simtk.org/projects/csibath].Head collisions in sport can result in catastrophic injuries to the cervical spine. Musculoskeletal modelling can help analyse the relationship between motion, external forces and internal loads that lead to injury. However, impact specific musculoskeletal models are lacking as current viscoelastic values used to describe cervical spine joint dynamics have been obtained from unrepresentative quasi-static or static experiments. The aim of this study was to develop and validate a cervical spine musculoskeletal model for use in axial impacts. Cervical spine specimens (C2-C6) were tested under measured sub-catastrophic loads and the resulting 3D motion of the vertebrae was measured. Specimen specific musculoskeletal models were then created and used to estimate the axial and shear viscoelastic (stiffness and damping) properties of the joints through an optimisation algorithm that minimised tracking errors between measured and simulated kinematics. A five-fold cross validation and a Monte Carlo sensitivity analysis were conducted to assess the performance of the newly estimated parameters. The impact-specific parameters were integrated in a population specific musculoskeletal model and used to assess cervical spine loads measured from Rugby union impacts compared to available models. Results of the optimisation showed a larger increase of axial joint stiffness compared to axial damping and shear viscoelastic parameters for all models. The sensitivity analysis revealed that lower values of axial stiffness and shear damping reduced the models performance considerably compared to other degrees of freedom. The impact-specific parameters integrated in the population specific model estimated more appropriate joint displacements for axial head impacts compared to available models and are therefore more suited for injury mechanism analysis.Rugby Football Union (RFU) Injured Players Foundatio
Continental-scale patterns in diel flight timing of high-altitude migratory insects
Many insects depend on high-altitude, migratory movements during part of their life cycle. The daily timing of these migratory movements is not random, e.g. many insect species show peak migratory flight activity at dawn, noon or dusk. These insects provide essential ecosystem services such as pollination but also contribute to crop damage. Quantifying the diel timing of their migratory flight and its geographical and seasonal variation, are hence key towards effective conservation and pest management. Vertical-looking radars provide continuous and automated measurements of insect migration, but large-scale application has not been possible because of limited availability of suitable devices. Here, we quantify patterns in diel flight periodicity of migratory insects between 50 and 500 m above ground level during March-October 2021 using a network of 17 vertical-looking radars across Europe. Independent of the overall daily migratory movements and location, peak migratory movements occur around noon, during crepuscular evening and occasionally the morning. Relative daily proportions of insect migration intensity and traffic during the diel phases of crepuscular-morning, day, crepuscular-evening and night remain largely equal throughout May-September and across Europe. These findings highlight, extend, and generalize previous regional-scale findings on diel migratory insect movement patterns to the whole of temperate Europe.This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'
How reliable are knee kinematics and kinetics during side-cutting manoeuvres?
INTRODUCTION: Side-cutting tasks are commonly used in dynamic assessment of ACL injury risk, but only limited information is available concerning the reliability of knee loading parameters. The aim of this study was to investigate the reliability of side-cutting data with additional focus on modelling approaches and task execution variables. METHODS: Each subject (n=8) attended six testing sessions conducted by two observers. Kinematic and kinetic data of 45° side-cutting tasks was collected. Inter-trial, inter-session, inter-observer variability and observer/trial ratios were calculated at every time-point of normalised stance, for data derived from two modelling approaches. Variation in task execution variables was regressed against that of temporal profiles of relevant knee data using one-dimensional statistical parametric mapping. RESULTS: Variability in knee kinematics was consistently low across the time-series waveform (≤5°), but knee kinetic variability was high (31.8, 24.1 and 16.9Nm for sagittal, frontal and transverse planes, respectively) in the weight acceptance phase of the side-cutting task. Calculations conveyed consistently moderate-to-good measurement reliability. Inverse kinematic modelling reduced the variability in sagittal (∼6Nm) and frontal planes (∼10Nm) compared to direct kinematic modelling. Variation in task execution variables did not explain any knee data variability. CONCLUSION: Side-cutting data appears to be reliably measured, however high knee moment variability exhibited in all planes, particularly in the early stance phase, suggests cautious interpretation towards ACL injury mechanics. Such variability may be inherent to the dynamic nature of the side-cutting task or experimental issues not yet known
Integrated Operational Taxonomic Units (IOTUs) in Echolocating Bats: A Bridge between Molecular and Traditional Taxonomy
Background: Nowadays, molecular techniques are widespread tools for the identification of biological entities. However,
until very few years ago, their application to taxonomy provoked intense debates between traditional and molecular
taxonomists. To prevent every kind of disagreement, it is essential to standardize taxonomic definitions. Along these lines,
we introduced the concept of Integrated Operational Taxonomic Unit (IOTU). IOTUs come from the concept of Operational
Taxonomic Unit (OTU) and paralleled the Molecular Operational Taxonomic Unit (MOTU). The latter is largely used as
a standard in many molecular-based works (even if not always explicitly formalized). However, while MOTUs are assigned
solely on molecular variation criteria, IOTUs are identified from patterns of molecular variation that are supported by at least
one more taxonomic characteristic.
Methodology/Principal Findings: We tested the use of IOTUs on the widest DNA barcoding dataset of Italian echolocating
bats species ever assembled (i.e. 31 species, 209 samples). We identified 31 molecular entities, 26 of which corresponded to
the morphologically assigned species, two MOTUs and three IOTUs. Interestingly, we found three IOTUs in Myotis nattereri,
one of which is a newly described lineage found only in central and southern Italy. In addition, we found a level of molecular
variability within four vespertilionid species deserving further analyses. According to our scheme two of them (i.e.
M. bechsteinii and Plecotus auritus) should be ranked as unconfirmed candidate species (UCS).
Conclusions/Significance: From a systematic point of view, IOTUs are more informative than the general concept of OTUs
and the more recent MOTUs. According to information content, IOTUs are closer to species, although it is important to
underline that IOTUs are not species. Overall, the use of a more precise panel of taxonomic entities increases the clarity in
the systematic field and has the potential to fill the gaps between modern and traditional taxonomy
Assessing differences in connectivity based on habitat versus movement models for brown bears in the Carpathians
Context. Connectivity assessments typically rely on resistance surfaces derived from habitat models, assuming that higher-quality habitat facilitates movement. This assumption remains largely untested though, and it is unlikely that the same environmental factors determine both animal movements and habitat selection, potentially biasing connectivity assessments. Objectives. We evaluated how much connectivity assessments differ when based on resistance surfaces from habitat versus movement models. In addition, we tested how sensitive connectivity assessments are with respect to the parameterization of the movement models. Methods. We parameterized maximum entropy models to predict habitat suitability, and step selection functions to derive movement models for brown bear (Ursus arctos) in the northeastern Carpathians. We compared spatial patterns and distributions of resistance values derived from those models, and locations and characteristics of potential movement corridors. Results. Brown bears preferred areas with high forest cover, close to forest edges, high topographic complexity, and with low human pressure in both habitat and movement models. However, resistance surfaces derived from the habitat models based on predictors measured at broad and medium scales tended to underestimate connectivity, as they predicted substantially higher resistance values for most of the study area, including corridors. Conclusions. Our findings highlighted that connectivity assessments should be based on movement information if available, rather than generic habitat models. However, the parameterization of movement models is important, because the type of movement events considered, and the sampling method of environmental covariates can greatly affect connectivity assessments, and hence the predicted corridors
- …