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TITLE 29 

Movement variability and skills monitoring in sports 30 

ABSTRACT 31 

The aim of this paper is to present a review on the role that movement variability 32 

plays in the analysis of sports movement and in the monitoring of the athlete’s skills. 33 

Movement variability has been traditionally considered an unwanted noise to be 34 

reduced, but recent studies have re-evaluated its role and have tried to understand 35 

whether it may contain important information about the neuro-musculo-skeletal 36 

organisation. Issues concerning both views of movement variability, different 37 

approaches for analysing it and future perspectives are discussed. 38 

Information regarding the nature of the movement variability is vital in the analysis of 39 

sports movements/motor skills and the way in which these movements are analysed 40 

and the movement variability subsequently quantified is dependent on the movement 41 

in question and the issues the researcher is trying to address. In dealing with a 42 

number of issues regarding movement variability, this paper has also raised a 43 

number of questions which are still to be addressed. 44 

45 



INTRODUCTION 46 

Movement variability is pervasive throughout the multiple levels of movement 47 

organization and occurs not only between but also within individuals (Bartlett, Wheat, 48 

& Robins, 2007; Bartlett, 1997; Bates, 1996; Hatze, 1986; James, 2004; Müller & 49 

Sternad, 2004; Newell, Deutsch, Sosnoff, & Mayer-Kress, 2006). Every time we 50 

replicate the same movement a certain amount of change may be recorded between 51 

its subsequent repetitions, regardless of how good or familiar we are in performing it 52 

(  53 

Figure 1). 54 

 55 

**** Figure 1 about here **** 56 

 57 

The study of movement variability has been gaining increasing interest in the sports 58 

biomechanics community. In the last six years, for example, three “Geoffrey Dyson” 59 

lectures (Bartlett, 2005; Bates, 2010; Hamill, 2006), several keynote talks (e.g. 60 

Bartlett, 2004; Hamill, Haddad, & Van Emmerik, 2005; Preatoni, 2010; Wilson, 2009), 61 

and an applied session at the annual conference of the International Society of 62 

Biomechanics in Sports (ISBS 2009 hosted by the University of Limerick), have 63 

demonstrated the importance of movement variability (MV) and coordination 64 

variability (CV) in the analysis of sports movements. 65 



Movement Variability in Sports Biomechanics 66 

Sports biomechanics possesses distinctive peculiarities compared with other 67 

branches of the study of human motion such as clinical biomechanics or ergonomics. 68 

While clinical biomechanics is generally devoted to describing average behaviours 69 

and to comparing pathological patterns to a physiological range, the sports context 70 

should not be centred on the idea of average subject and normality. Rather, sports 71 

biomechanics usually aims at enhancing the individual capabilities, in terms of 72 

performance, technique proficiency and consistency of results. At the same time, it 73 

should also pursue injury prevention and wellness, given the increased (in some 74 

cases maximal) and repetitive biomechanical demands the athlete receives. 75 

Details concerning movement organisation and performance may be fundamental in 76 

sports, and the higher the level of performance the greater their importance. Elite 77 

athletes possess an outstanding mastery of their movements and their motor 78 

outcomes often appear very repeatable and stereotyped. However subtle differences 79 

may distinguish one from another, or small changes may develop over time as a 80 

consequence of environmental changes, training procedures, learning phenomena, 81 

latent pathologies or incomplete recoveries. These underlying factors may be easily 82 

masked by the presence of variability. 83 

Therefore the study of movement variability in sports deserves particular attention. It 84 

should not be addressed only in terms of reliability and appropriate experimental 85 

procedures, which are still essential, but it should also be considered as a potential 86 

source of information in the process of analysing and monitoring the athlete’s 87 

biomechanical qualities. 88 



Monitoring Sports Skills 89 

Motor skills represent the ability of obtaining a predetermined outcome with a high 90 

degree of certainty and maximum proficiency (Newell & Ranganathan, 2009; Schmidt 91 

& Lee, 2005). Hence, the process of learning or improving sports skills involves the 92 

capability of producing a stable performance under different conditions: only repeated 93 

motor performance reflects mastery in carrying out a desired task. 94 

The process of monitoring the athlete’s capabilities may be schematised like a 95 

feedback loop (Preatoni, 2007; Preatoni, La Torre, Santambrogio, & Rodano, 2010b) 96 

( 97 

 98 

Figure 2), where the starting point is the athlete executing a motor task and the end 99 

point is the same athlete who gets back information concerning his/her performance 100 

directly or through the coach’s mediation. 101 

 102 

**** Figure 2 about here **** 103 

 104 

Three intermediate phases are identifiable. Phase I addresses the issue of motor 105 

performance depiction. Phase II deals with the definition of references that provide 106 



the criterion to which measures from Phase I are compared and through which the 107 

individual skills are assessed. The interpretation of biomechanical data and the 108 

determination of references may be carried out on multiple levels, like, for example: 109 

using coaches’ anecdotal indications, creating a record of individual changes over 110 

time, modelling optimal behaviour through a purely theoretical approach and/or 111 

simulation. Phase III involves the need for returning data to the athlete/coach, after 112 

translating biomechanical observations into information that is suitable for both the 113 

end users’ needs and their know-how. This cyclic flow of information provides 114 

athletes and coaches with a tool to monitor motor skill trends, to check on possible 115 

anomalies, to plan and control training programs and rehabilitative procedures. 116 

Sports Skills and the Dual Nature of Movement Variability 117 

In light of the framework presented in  118 

 119 

Figure 2, MV may emerge as an unwanted source of error that should be eliminated 120 

or reduced (Fitts, 1954; Fitts & Posner, 1967; Harris & Wolpert, 1998; Schmidt, 121 

Zelaznik, Hawkins, Frank, & Quinn Jr, 1979; Van Beers, Baraduc, & Wolpert, 2002). 122 

When trying to capture the biomechanics of individual technique, research should 123 



depict the core strategy that governs the movement, regardless of the variations that 124 

emerge across repetitions. 125 

However, MV always occurs when the same action is repeated and even the elite 126 

athlete cannot reproduce identical motor patterns (Bartlett, et al., 2007). MV is 127 

inherently present in motor performance and may be associated with the extreme 128 

complexity of the neuro-musculo-skeletal system and with the redundancy of its 129 

degrees of freedom (e.g. Bartlett, et al., 2007; Bernstein, 1967; Hamill, et al., 2005; 130 

James, 2004; Newell, et al., 2006; Riley & Turvey, 2002). While MV has been 131 

associated with a reduction in performance due to a lack of consistency (Dierks & 132 

Davis, 2007; Knudson & Blackwell, 2005; Salo & Grimshaw, 1998), it may not 133 

correspond only to randomness but also to functional changes whose investigation 134 

might unveil information about the system health, about its evolutions, and about its 135 

flexibility and adaptability to variable external conditions (Bartlett, et al., 2007; Glazier 136 

& Davids, 2009; Hamill, Van Emmerik, Heiderscheit, &Li, 1999). 137 

Therefore MV may possess a dual connotation: (1) It is an unwanted error which 138 

impedes a simple description of the actual individual status through standard 139 

approaches. Moreover, it hinders the detection of the small inter-individual 140 

differences or intra-individual changes that often characterise the sports domain. At 141 

the same time, (2) MV reflects the inherent functional features of the neuromuscular 142 

system and may contain important information that should not be neglected. 143 

Aims of the Paper 144 

Despite the efforts of researchers, many issues concerning the variability of human 145 

motion are still to be thoroughly addressed and/or are waiting for comprehensive 146 

explanations. These issues include: the magnitude of movement variability and the 147 



subsequent need for appropriate experimental design and data processing; the 148 

meaning of MV; the information MV may provide and the possible relationship 149 

between MV and performance, MV and the acquisition/development of motor skills, 150 

and/or MV and injury factors. Furthermore, MV needs to be considered during the 151 

selection of the experimental design and may influence the validity of the obtained 152 

results. Currently, however, there are no universally agreed guidelines for 153 

practitioners regarding the treatment of variability within experiments. The lack of 154 

such information becomes more serious when the focus of investigations is shifted 155 

from basic movements such as walking or running to the multiplicity of more complex 156 

sports movements. 157 

Therefore, the aim of this paper is to present a review of the role and the potential 158 

that movement variability and coordination variability may have in the process of 159 

monitoring the athlete’s motor patterns. The review will endeavour to address (i) how 160 

much MV is present in sports movements, (ii) how the human system copes with MV 161 

and (iii) the purpose of MV. We will report practical indications about how MV should 162 

be treated, present the different approaches that may be used to study MV in sports 163 

and we will emphasise their limits and potential applications. In addition, we will 164 

report possible developments and ideas for future research in MV. 165 



THE TRADITIONAL APPROACH: MOVEMENT VARIABILITY 166 

AS NOISE 167 

There is a growing need to develop methodologies that enable investigators to 168 

capture and effectively analyse individual motor skills and their change over time 169 

independent of the variability that emerges with repetition of the same movement. 170 

Many studies have revealed changes inherent to human motion and have suggested, 171 

whenever possible, the use of experimental protocol in which multiple trials are 172 

recorded for the subject (Chau, Young, & Redekop, 2005; Hamill & Mcniven, 1990; 173 

James, 2004; Preatoni, 2007; Preatoni, et al., 2010b; Rodano & Squadrone, 2002; 174 

Winter, 1984) given that the analysis of a single trial can often lead to erroneous 175 

conclusion (Bates, Dufek, & Davis, 1992) particularly in the study of individual motor 176 

skills. Variability in motor skills stabilises within certain ranges (James, 2004) and this 177 

may be dependent on the subject, the variable and on the experimental procedures 178 

for data collection. 179 

According to the conventional control theory approach, movement variability is made 180 

equal to noise (Equation [1]) that prevents the final output from matching the planned 181 

program (Bartlett, et al., 2007; Bays & Wolpert, 2007; Fitts, 1954; Harris & Wolpert, 182 

1998; James, 2004; Müller & Sternad, 2004; Newell, et al., 2006; Van Beers, et al., 183 

2002). In this approach, outcome variability (i.e. variability in ‘what’ has been 184 

achieved) and performance variability (i.e. variability in ‘how’ it has been obtained) 185 

are equally read as poor achievement: both of them come from noise that may 186 

corrupt the different levels of motor organisation (Veb, i.e. errors in the sensory 187 

information and in the motor output commands) and may be caused by the 188 



changeable environmental conditions (Vee) or by measuring and data processing 189 

procedures (Vem). 190 

[1] Ve = Veb + Vee+ Vem 191 

This view of MV has important implications for the investigation of sports skills and 192 

highlights the need for proper experimental designs and data reduction procedures 193 

(Bartlett, et al., 2007; Comyns, Harrison, Hennessy, & Jensen, 2007; Dona, Preatoni, 194 

Cobelli, Rodano, & Harrison, 2009; Preatoni, 2007; Preatoni, et al., 2010b). The 195 

quantification, synthesis and meaning of MV are very important in depicting the 196 

athlete’s status and can influence the practical decisions made in sport. 197 

In the investigation of sports skills a crucial element is a consistent description of the 198 

actual motor skills of the athlete. This may involve the extraction of either discrete or 199 

continuous variables which describe the athlete’s kinematic and kinetic patterns. 200 

Discrete Measures Variability 201 

Quantitative biomechanical analysis often involves the extraction of parameters from 202 

kinematic and kinetic curves. The assessment of discrete measures is commonly 203 

used to to understand the characteristics of a particular motor task and to outline the 204 

differences between different populations. In addition, discrete parameters have been 205 

used for performance evaluation (Bartlett, 2005; Vamos & Dowling, 1993) or 206 

enhancement and injury prevention (Granata, Marras, & Davis, 1999; James, Dufek, 207 

& Bates, 2000; Nigg & Bobbert, 1990). 208 

While several researchers have investigated the reliability of normal walking 209 

variables (Benedetti, Catani, Leardini, Pignotti, & Giannini, 1998; Chau, et al., 2005; 210 

Dingwell & Cavanagh, 2001; Growney, Meglan, Johnson, Cahalan, & An, 1997; 211 

Kadaba, Ramakrishnan, & Wootten, 1990; Kadaba et al., 1989; Steinwender et al., 212 



2000; Stolze, Kuhtz-Buschbeck, Mondwurf, Jöhnk, & Friege, 1998; Winter, 1984), 213 

relatively few studies have been conducted to assess the variability of kinematic and 214 

kinetic variables during sports movements. This lack of research is compounded 215 

further by the wide variety of motor tasks that are performed by athletes in many 216 

different sports disciplines. Jumping (James, et al., 2000; Rodano & Squadrone, 217 

2002) and running (Bates, Osternig, Sawhill, & James, 1983; Devita & Bates, 1988; 218 

Diss, 2001; Ferber, Mcclay Davis, Williams, & Laughton, 2002; Lees & Bouracier, 219 

1994; Queen, Gross, & Liu, 2006) are the most frequently studied movements and 220 

more recently the sprint start (Bradshaw, Maulder, & Keogh, 2007) and race walking 221 

(Preatoni, 2007; Preatoni, et al., 2010b) have been investigated. 222 

When analysing any sporting movement we need to be careful not to confuse 223 

variability present within ‘global parameters’ (parameters which define the output of 224 

the whole system) with variability that is present within kinetic and kinematic 225 

(technique parameters). Low variability in the outcome measure does not necessarily 226 

indicate a low variability in technique parameters describing the movement. This has 227 

previously been demonstrated in reaching movements whereby variability in discrete 228 

kinematic variables did not correspond to the endpoint variability (Messier & Kalaska, 229 

1999). In gait analysis, (Karamanidis, Arampatzis, & Bruggemann, 2003) reported 230 

that variability within kinematic data is primarily determined by the specific parameter 231 

under investigation. Further to this, Van Emmerik et al. (1999) reported lower levels 232 

of variability in joint kinematics between individuals with Parkinson’s disease and 233 

healthy controls but not for basic gait parameters. They concluded that variability of 234 

stride characteristics offers a less sensitive measure of differences between groups 235 

than does variability of joint characteristics. Additionally, Preatoni (2007) and 236 

Preatoni et al. (2010b) showed that skilled race walkers produced intra-individual 237 



coefficient of variation that were very low (less than 3%) for ‘global parameters’ such 238 

stance duration, step length and progression speed, but may become fairly high 239 

(greater than 10%) for kinematic/kinetic parameters related to movement execution 240 

and technique. 241 

Many different methods have been proposed for estimating the variability within 242 

kinematic and kinetic parameters. The use of standard deviation (Kao, Ringenbach, 243 

& Martin, 2003; Owings & Grabiner, 2004) and coefficient of variation (Bradshaw, et 244 

al., 2007; Queen, et al., 2006) as spread estimators is common within quantitative 245 

motion analysis. However, the use of these methods relies on the assumption that 246 

the data being analysed are normally distributed and this is not always the case or 247 

may be not easily assessed. 248 

Non-parametric measures, such as the inter-quartile range (IQR) or the median 249 

absolute deviation (MAD) have been indicated as more robust estimates of variability 250 

(Chau & Parker, 2004; Chau, et al., 2005). In support of this view, Preatoni (2007) 251 

and Preatoni et al. (2010b) analysed race walking data and concluded that 252 

summarising the variability of discrete variables should not be addressed using 253 

parametric estimates indiscriminately. The use of either standard deviation or 254 

coefficient of variation could inflate variability assessment thus diminishing the 255 

chances of detecting significant differences when they do in fact exist (Chau, et al., 256 

2005). However, MAD and IQR also manifested statistically significant changes due 257 

to contaminants in nearly 50% of the considered kinetic/kinematic parameters 258 

(Preatoni, 2007). Therefore, the use of non-parametric estimators of spread, 259 

combined with the collection of a “proper” number of trials and the identification and 260 

elimination of atypical occurrences appear to be the most advisable solution (Chau, 261 

et al., 2005). 262 



Unfortunately, the identification of how many repetitions may be considered 263 

appropriate is not straightforward, due to multiple causes. Universally recognised 264 

references are not always available, or are available for a limited number of sports 265 

movements, and no proposed standards exist on how this estimation should be 266 

made, especially when more than one single measure is included in the analysis. 267 

The sequential estimation procedure (Hamill & Mcniven, 1990) is a technique used to 268 

determine the number of consecutive trials that are necessary to obtain a stable 269 

mean for each considered variable, subject and movement, whereby a value is 270 

generated for the cumulative mean by adding one trial at a time. Stability is 271 

recognised when the successive mean deviations fall within a range around the 272 

overall average. The specific criterion to obtain a stable mean (i.e. the bandwidth) is 273 

based on the need to obtain a stable result while attempting to keep the total of trials 274 

as low as possible (Hamill & Mcniven, 1990). The number of trials required to depict 275 

a stable performance is therefore a consequence of the activity, the subject and the 276 

variable under investigation (Preatoni, 2007; Preatoni, et al., 2010b). In the analysis 277 

of running the number of trials required to provide reliable estimates of the ground 278 

reaction force (GRF) data variables has been identified to be as few as 8 (Bates, et 279 

al., 1983) and as many as 25 (Devita & Bates, 1988). In walking the minimum 280 

number of trials required has been shown to be 10 (Hamill & Mcniven, 1990). When 281 

looking at joint kinetic data (moments and powers) during vertical jumping, Rodano 282 

and Squadrone (2002) concluded that a 12-trial protocol was needed to obtain a 283 

stable estimate. Preatoni et al. (2010b) observed a number of kinematic parameters 284 

depicting race walking technique in a group of elite athletes, and suggested that as 285 

many as 15 trials were necessary to obtain stability of average values. 286 



In order to be able to determine how to successfully treat movement variability and 287 

the conclusions that can be drawn when investigating a wide variety of sports skills it 288 

is necessary to create a database of what has previously been identified. 289 

Continuous Measures Variability 290 

The use of discrete variables in the analysis of human movement is powerful but may 291 

not be sufficient to provide an exhaustive description of the observed movement. 292 

When a single measurement is extracted from a continuous variable, a large amount 293 

of data are discarded and potentially useful information may be unaccounted for 294 

(Queen, et al., 2006; Ryan, Harrison, & Hayes, 2006; Sutherland, Kaufman, 295 

Campbell, Ambrosini, & Wyatt, 1996). Indeed, the shape of kinematic/kinetic curves 296 

is often a good indicator of “how” a motor task is accomplished and may help either 297 

physicians in classifying the patient’s behaviour as physiological or pathological, or 298 

coaches in identifying the athlete’s characteristics and their change over time. When 299 

repeating the same movement many times, an individual does not generate 300 

kinematic/kinetic patterns that perfectly overlap, but produces a family of curves that 301 

may differ from each other in magnitudes and timings. 302 

The issue of variability across curves is considered by practitioners when attempting 303 

to depict the individual motor patterns, but the analysis typically stops at summarising 304 

the general characteristics of a group of curves through the estimation of confidence 305 

bands (e.g. mean curves ± a multiple of the standard deviation). Previous research 306 

on the variability within continuous variables is even less prevalent than research on 307 

discrete parameters. Some authors have investigated the reproducibility of gait 308 

variables but have generally focussed on the influence of methodological factors on 309 

data repeatability (Growney, et al., 1997; Kadaba, et al., 1989) or on the differences 310 

between normal and pathological subjects (Steinwender, et al., 2000). 311 



The two estimators that have been commonly used to assess repeatability in 312 

continuous variables are the coefficient of multiple correlation (CMC) (Kadaba, et al., 313 

1989) and the intra-class correlation coefficient (ICC) (Duhamel et al., 2004; Ferber, 314 

et al., 2002). Both indeces may range between 0, for extremely poor repeatability, 315 

and 1, for perfect reproducibility. The CMC requires experimental designs with 316 

multiple testing sessions, even if intra-session variability is the only aim of the 317 

analysis. For example, Growney et al. (1997) used 3 trials collected on each of 3 318 

separate days; Queen et al. (2006) adopted two separate testing sessions with as 319 

many as six trials each. Alternatively, the ICC can be calculated also when data from 320 

a single testing session are available, and may be considered as the “proportion of 321 

variance due to the time-to-time variability in the total variance” (Duhamel, et al., 322 

2004). 323 

Within-day, between-day and overall variability of continuous variables have mainly 324 

been assessed during walking (Growney, et al., 1997; Kadaba, et al., 1989; 325 

Steinwender, et al., 2000) and running activities (Queen, et al., 2006). Results 326 

showed that lower limb kinematics and kinetics have better reproducibility in the 327 

sagittal plane, while reliability on secondary planes of motion is less effective. Hence, 328 

the authors have concluded that repeatability for sagittal plane variables is good 329 

enough for their use in clinical examinations, provided that operators are very careful 330 

with marker placement and in the control of experimental settings. 331 

Unfortunately and similarly observations on discrete measures analysis, there are 332 

neither standard guidelines to be followed, nor agreement about what should be set 333 

as a threshold settings for good reliability. Shrout (1998) proposed categories of 334 

agreement based on ICC of discrete variables, and set “substantial” reliability for 335 

values greater than 0.80. However, other authors (Atkinson & Nevill, 1998; Duhamel, 336 



et al., 2004) have underpinned the need for more research to identify appropriate 337 

reference values and argued that each motion variable, experimental objective and 338 

population may involve different limits above which repeatability can be considered 339 

good. 340 

Moreover, there is lack of such investigations in sports movements, and in cohorts of 341 

high-level athletes in particular. Preatoni (2007) analysed 15 continuous variables in 342 

a group of very skilled race walkers, including joint angles, moments and powers, 343 

and ground reaction forces. Results concurred with previous findings, reporting better 344 

reliability for ground reaction forces and angles in the sagittal plane, but also showed 345 

that the values of ICCs were lower than the ones reported for walking (Duhamel, et 346 

al., 2004), and that the level of intra-individual variability was substantially subject- 347 

and variable-dependent. Preatoni also suggested an iterative procedure (Figure 3) 348 

based on the calculation of the ICC, which may be used to iteratively identify and 349 

discard the most unrepresentative curves of a subject, until the remaining ones have 350 

a repeatability that is equal or greater than a pre-determined threshold. 351 

 352 

**** Figure 3 about here **** 353 

 354 

However, much more effort is required to define standard guidelines for addressing 355 

continuous measures variability in sports and to create reference databases that 356 

could help in the analysis of data on performance and on its consistency and 357 

evolution over time. The list of open issues that still deserve attention is long and 358 

would also include, for instance: (i) the selection of the best statistical methods for 359 

summarising and comparing families of intra-individual curves (Chau, et al., 2005; 360 

Duhamel, et al., 2004; Lenhoff et al., 1999; Olshen, Biden, Wyatt, & Sutherland, 361 



1989; Sutherland, et al., 1996), especially when the aim of the study is the detection 362 

of the subtle individual changes of the athlete (Hopkins, 2000; Hopkins, Hawley, & 363 

Burke, 1999), and not a patient’s classification that should be free from type II errors 364 

(Olshen, et al., 1989; Sutherland, et al., 1996); (ii) the definition of proper 365 

experimental protocols and selection of a representative number of trials, based on 366 

continuous measures variability; (iii) sensitivity analysis about the effect of time-367 

normalisation of curves and the possible need for curve registration (Chau, et al., 368 

2005; Sadeghi et al., 2000; Sadeghi, Mathieu, Sadeghi, & Labelle, 2003). 369 

 370 

As already stated movement variability has traditionally been considered to be noise 371 

and therefore an aspect of human motion that we are trying to eliminate. However, 372 

this is not possible and therefore it must be taken into consideration when 373 

investigating sports movements. Within sports biomechanics we have the additional 374 

constraint of often being limited by the number of trials we are able to collect, 375 

especially if collected within a competition setting. Furthermore, the additional factors 376 

encountered during competition in comparison to training may also influence both the 377 

movement itself and the variability present and this therefore also needs to be taken 378 

into consideration. 379 

380 



MOVEMENT VARIABILITY AS INFORMATION: NEW 381 

APPROACHES 382 

Recent investigations and experimental evidence have shown that outcome and 383 

performance variability should not be read in the same way. While outcome variability 384 

is by definition an unwanted deviation from the pursued objective, performance 385 

variability is not necessarily bad. Several researchers have supported the idea that 386 

inter-trial variability (Vtot) does not correspond to noise only but is a combination 387 

(Equation [2]) of artefact of noise in the neuro-musculo-skeletal system (i.e. Ve in 388 

Equation [1]) and functional changes that may be associated with its proprieties (Vnl) 389 

(Bartlett, et al., 2007; Glazier & Davids, 2009; Hamill, et al., 1999; James, 2004): 390 

[2] Vtot = Ve + Vnl 391 

Vnl is an integral part of the biological signal and may be interpreted as the flexibility 392 

of the system to explore different strategies to find the most effective one among the 393 

many available. This adaptability allows for learning a new movement or adjusting 394 

the already known one by gradually selecting the most appropriate pattern for the 395 

actual task (Deutsch & Newell, 2003; Dingwell & Cusumano, 2000; Dingwell, 396 

Cusumano, Cavanagh, & Sternad, 2001; Dingwell, Cusumano, Sternad, & 397 

Cavanagh, 2000; Hamill, et al., 2005; Hausdorff, 2005; James, 2004; Müller & 398 

Sternad, 2004; Newell, Broderick, Deutsch, & Slifkin, 2003; Newell, Challis, & 399 

Morrison, 2000; Newell, et al., 2006; Riley & Turvey, 2002). The subject is thus able 400 

to gradually release the degrees of freedom that have been initially frozen to achieve 401 

a greater control over an unfamiliar situation. Changes in the contributions of Ve and 402 

Vnl to the total variability may be related to changes in motor strategies and may thus 403 

reveal the effects of adaptations, pathologies and skills learning (e.g. Bartlett, et al., 404 



2007; Dingwell, et al., 2001; Wilson, Simpson, Van Emmerik, & Hamill, 2008). It 405 

should be noted here that what we are referring to in this paper is biological 406 

variability, which is not noise resulting from measuring and data processing 407 

procedures, but is internal to the movement signal and cannot be removed from the 408 

signal. Non-biological noise (Vee and Vem in Equation [1]) on the other hand is a high 409 

frequency component which can be attenuated by data conditioning (Kantz & 410 

Schreiber, 1997) . 411 

The conventional approaches to MV can only quantify the overall variability, and they 412 

rely on assumptions and procedures that do not allow examination of its features and 413 

structure. They cannot, for example, assess the extent to which Ve (or, more 414 

specifically, Veb) and Vnl participate in the generation of MV, and therefore they are 415 

not effective in evaluating the possible information MV conveys. The use of nonlinear 416 

dynamics tools (e.g. entropy measures), the analysis of coordinative features (e.g. 417 

continuous relative phase) or the use of functional data analysis represent alternative 418 

instruments to explore the nature of motion variability and its relation with 419 

performances, skills development or injury factors. Only recently and only few 420 

authors have used these methods to investigate MV in sports and in elite athletes in 421 

particular. 422 

An Example of Nonlinear Methods: Entropy Measures 423 

A number of nonlinear methods, such as the Lyapunov exponent (Abarbanel, Brown, 424 

Sidorowich, & Tsimring, 1993), and entropy measures (Pincus, 1995; Pincus, 1991; 425 

Richman & Moorman, 2000), have been proposed as tools for investigating the 426 

nature of variability in biological systems. Nonlinear methods do not consider the 427 

subsequent repetitions of the same motor task as a bunch of similar but independent 428 

events that need to be summarised through statistics (e.g. average pattern and 429 



confidence band). Rather, they look at the repeated cycles of the movement as a 430 

continuous pseudo-periodic time-series and try to evaluate the dynamics that govern 431 

the changes occurring between the cycles. Some authors have recently applied 432 

nonlinear analysis in the study of neuro-motor pathologies (Dingwell & Cusumano, 433 

2000; Dingwell, et al., 2000; Morrison & Newell, 2000; Newell, et al., 2006; Smith, N. 434 

Stergiou, & B.D. Ulrich, 2010; Vaillancourt & Newell, 2000; Vaillancourt, Slifkin, & 435 

Newell, 2001) or in the characterisation of movement development, posture and 436 

locomotion (Dingwell, et al., 2001; Lamoth & Van Heuvelen, 2012; Newell, et al., 437 

2003; Newell, et al., 2000; Newell, et al., 2006), but the number of studies concerning 438 

sports movements is extremely limited (Preatoni, Ferrario, Dona, Hamill, & Rodano, 439 

2010a). This lack of research may be mainly due to the computational procedures of 440 

these techniques, which require a relatively large amount of data (i.e. number of data 441 

points= number of trials x duration x sampling frequency), and which consequently 442 

make the experimental procedure be difficult to be implemented in a sports context 443 

where typically a limited number of repetitions can be collected. 444 

Among the different nonlinear methods, entropy measures such as Approximate 445 

Entropy (ApEn) (Pincus, 1995; Pincus, 1991) or Sample Entropy (SampEn) 446 

(Richman & Moorman, 2000) can be considered particularly appropriate for the study 447 

of sports movements, where variability is likely to have both a deterministic and a 448 

stochastic origin, and where data set are typically small and may be affected by 449 

outliers (Preatoni, et al., 2010a). Entropy indices quantify the regularity of a time-450 

series (e.g. a kinematic or kinetic measure) that contains a sequence of repetitions of 451 

the same movement (Figure 4a). ApEn and SampEn measure the probability that 452 

similar sequences of m points in the time-series, remain similar within a tolerance 453 

level (r) when a point is added to the sequence (m+1 sequences) (Pincus, 1995; 454 



Richman & Moorman, 2000). That is, in more simplistic terms, a count of how many 455 

similar patches of m points are replicated in the time-series, carried out for each 456 

sequence of m points in the signal, and divided by the same count carried out for a 457 

patch m+1 points long. ApEn and SampEn range from 0, for regular or periodical 458 

time series, to positive values, for which the higher the entropy, the less regular and 459 

predictable the time series (Pincus, 1995; Richman & Moorman, 2000). Since 460 

regularity is related to the complexity of the system that produces the signal (Pincus, 461 

1995), an increase in regularity may indicate a loss of complexity of the system and 462 

has often been associated to pathological conditions (Vaillancourt & Newell, 2000; 463 

Vaillancourt, et al., 2001). Furthermore, differences in the predictability of movement 464 

patterns may also reflect underlying changes in motor strategies whereby the effects 465 

of adaptations, and skills learning may be revealed (Bartlett, et al., 2007), which may 466 

be particularly beneficial in sports movement analysis when subtle changes in 467 

performance are hidden by the magnitude of MV. 468 

 469 

**** Figure 4 about here **** 470 

 471 

Preatoni (2007) and Preatoni et al. (2010a) studied the nature of MV in sports by 472 

measuring sample entropy in kinematic and kinetic variables during race walking. 473 

They analysed the influence of the different sources of variability (i.e. Ve and Vnl in 474 

Equation [2]) over movement repeatability by comparing entropy values of the 475 

original time-series (made up of 20 gait cycles) with the ones of their surrogate 476 

counterparts. Surrogation is a method for generating new time-series, which 477 

maintains original data and its large-scale behaviour (periodicity, mean, variance and 478 

spectrum) but eliminates its possible small-scale structure (chaotic, linear/nonlinear-479 



deterministic) (Figure 4b). Therefore, if SampEn significantly increases after 480 

surrogation, then it is very likely that the variability between trials (periods) is not, or 481 

not only, the outcome of random processes. The study of race walking reported a 482 

significant increase of SampEn after surrogation in the range between 16% and 59%, 483 

depending on the analysed variable. Their results confirmed that MV is not only noise 484 

but also contains functional information concerning the organisation of the neuro-485 

musculo-skeletal system. Results comparing entropy content in the first and last half 486 

of trials also suggested that the structure of variability appears invariant and no 487 

adaptation effects emerge when a proper experimental protocol is followed. 488 

Finally, the same authors showed how entropy measure might have a potential for a 489 

fine discrimination between skill levels. While traditional analysis had failed in 490 

distinguishing between good athletes and elite ones in a group of apparently similar 491 

individuals, SampEn evidenced significant differences with less skilled race walkers 492 

showing increased regularity and therefore an increased control over those joints that 493 

in race walking mainly compensate for the locked position of the knee. Conversely, in 494 

line with the interpretation that higher values of entropy may be read as a better 495 

flexibility and adaptability to unpredictable environmental changes (Newell, et al., 496 

2006; Vaillancourt, et al., 2001) subjects with an outstanding ability reported a less 497 

rigid control over their body’s degrees of freedom. 498 

Dynamic Systems Theory Approach 499 

Non-linear tools such as entropy measures are computing-intensive procedures that 500 

give a concise and powerful measure/assessment of the nature of movement 501 

variability and of the extent of its being functional. However, they are not particularly 502 

effective in depicting how MV can be functional because they address multiple 503 

movement cycles as a whole, they do not look into its constitutive phases, and 504 



typically they do not observe the relationships between the multiple elements that 505 

concur in coordination and movement execution. 506 

From a dynamical systems approach, in systems with multiple degrees of freedom, 507 

variability in performance is a necessary condition for optimality and adaptability. 508 

Variability patterns in gait parameters such as stride length and stride frequency, 509 

therefore, may not reflect variability patterns in segmental coordination. This has 510 

been demonstrated in studies on Parkinson’s disease (Van Emmerik, et al., 1999). In 511 

biomechanical research on running injuries, several studies have now demonstrated 512 

an association between reduced coordination variability and orthopaedic disorders 513 

(Hamill, 2006; Hamill, Haddad, Heiderscheit, Van Emmerik, & Li, 2006).  514 

Coordination variability can be defined as the range of coordinative patterns the 515 

organism exhibits while performing a movement. It is often quantified as the between 516 

trial (i.e. between gait cycle) standard deviation of the movement trials. Multiple 517 

studies have reported that a certain amount of variability appears to be a signature of 518 

healthy, pain-free movement (e.g. Hamill, et al., 1999; Heiderscheit, Hamill, & Van 519 

Emmerik, 2002; Miller, Meardon, Derrick, & Gillette, 2008). These authors suggest 520 

that this finding is indicative of a narrow range of coordination patterns that allowed 521 

for pain-free running. However, since all of these studies were retrospective in 522 

nature, a causal relationship between variability and pathology could not be 523 

ascertained. Prospective studies on coordination variability and injury development 524 

are needed to assess this relationship. 525 

From a dynamical systems perspective, variability is not inherently good or bad, but 526 

indicates the range of coordination patterns that can be used to complete the motor 527 

task. This offers a different view in comparison to the more traditional ‘variability is 528 

bad’ perspective. In contrast, dynamical systems theory suggests that there is a 529 



functional role for variability that expresses the range of possible patterns and 530 

transitions between patterns of movement that a system can accomplish. It should be 531 

noted that abnormally low or high levels of variability may be detrimental to the 532 

system. 533 

In a dynamical systems approach, the reconstruction of the so-called state space is 534 

essential in identifying the important features of the behaviour of a system. The state 535 

space is a representation of the relevant variables that help identify the features of 536 

the system. Two methods for representing the state space of a system are typically 537 

used: 1) the angle-angle plot; and 2) position-velocity plot. An ‘angle-angle’ (e.g. 538 

sagittal plane knee angle versus ankle angle) plot can reveal regions were 539 

coordination changes take place as well as parts of the gait cycle where there is 540 

relative invariance in coordination patterns. These coordinative changes in the angle-541 

angle plots can be further quantified by vector coding techniques (see Heiderscheit, 542 

et al., 2002). The other form of state space is where the position and velocity of a 543 

joint or segment are plotted relative to each other. This state space representation is 544 

also often referred to as the phase plane. The phase plane representation is a first 545 

and critical step in the quantification of coordination using continuous relative phase 546 

techniques (see Hamill, et al., 1999). 547 

The relative motion between the angular time series of two joints or segments has 548 

been used to distinguish changes in coordination in sport as a function of expertise 549 

(see Wheat & Glazier, 2006). Various techniques have been developed over time to 550 

quantify the relative motion patterns and variability in angle-angle diagrams. These 551 

methods include chain encoding method developed by Freeman (see Whiting & 552 

Zernicke, 1982) and vector coding (Tepavac, 2001). In a modified version of vector 553 

coding (Heiderscheit, et al., 2002), the relative motion between the two segments is 554 



quantified by a coupling angle, an angle subtended from a vector adjoining two 555 

successive time points relative to the right horizontal. Since these angles are 556 

directional and obtained from polar distributions (0-360), taking the arithmetic mean 557 

of a series of angles can result in errors in the average value not representing the 558 

true orientation of the vectors. Therefore, mean coupling and standard deviation of 559 

the angles must be computed using circular statistics (Batschelet, 1981; Fisher, 560 

1996). 561 

The vector coding analysis can also provide a measure of coordination variability. 562 

Coordination variability measures can be obtained as averages across the gait cycle 563 

of between-cycle variation (a global variability measure), or more locally at key points 564 

or intervals across the cycle (such as early stance, mid stance, swing, etc.). 565 

Continuous relative phase (CRP) is often considered a higher order measure of the 566 

coordination between two segments or two joints Figure 5. This higher order 567 

emerges from the derivation of CRP from the movement dynamics in the phase 568 

plane of the two joints or segments. CRP analysis has been used to characterize 569 

joint or segmental coordination during gait (Hamill, et al., 1999; Van Emmerik, et al., 570 

1999). While CRP may seem to be relatively easy to implement, there are several 571 

key concepts regarding the methodology and the interpretation that must be 572 

addressed. First, CRP is not a higher resolution form of discrete relative phase 573 

(Peters, Haddad, Heiderscheit, Van Emmerik, & Hamill, 2003). CRP quantifies the 574 

coordination between two oscillators based on the difference in their phase plane 575 

angles. It should be understood that the motion of the segments and joints are not 576 

physical oscillators but are modelled behaviourally as oscillators. 577 

 578 
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 580 

A particularly important step in the CRP procedure involves normalizing the angular 581 

position and angular velocity profiles. Normalization of the two signals (i.e. position 582 

and velocity) that make up the phase plane is necessary to account for the amplitude 583 

and frequency differences in the signals. For a complete description of the necessity 584 

of normalizing these signals see Peters, et al. (2003). The phase plane is constructed 585 

by plotting the angular position versus angular velocity for each of the oscillators (i.e. 586 

joints or segments). For each of the oscillators, the phase angle is obtained by 587 

calculating the four-quadrant arctangent angle relative to the right horizontal at each 588 

instant in the cycle. To determine the CRP angle, the phase angle for one oscillator is 589 

subtracted from the other. When the CRP(i) angle is 0o, the two oscillators are 590 

perfectly in-phase. A CRP(i) angle of 180o indicates that the oscillators are perfectly 591 

anti-phase. Any CRP(i) angle between 0o and 180o indicates that the oscillators are 592 

out-of phase, but could be relatively in-phase (closer to 0o) or anti-phase (closer to 593 

180o). It is often tempting to use the CRP angle to discuss which oscillator is leading 594 

and which is lagging relative to the other oscillator. Since the phase angle of one 595 

oscillator is subtracted from the phase angle of another, the lead-lag interpretation is 596 

often assumed. However, the calculation of CRP described above does not allow for 597 

such an interpretation. 598 

The CRP time series can also be used to obtain a measure of coordination variability. 599 

For a proper assessment of coordination variability, the following two key aspects 600 

need to be addressed: (1) average variability measures should not be obtained 601 

directly from CRP time series that vary systematically throughout the movement 602 

(stride) cycle, and (2) variability measures can only be obtained from data that do not 603 



contain discontinuities. To obtain a measure of variability, we typically calculate the 604 

standard deviation with respect to the average CRP in the data. 605 

Principal Component Analysis and Functional Principal Component 606 

Analysis 607 

Principal Component Analysis (PCA) is a statistical technique, which is ideally suited 608 

to dimension reduction and examination of the modes of variation in experimental 609 

data. Traditionally PCA has been used to examine and interpret data sets that are 610 

discrete in nature, rather than continuous time series or curves. PCA reduces the 611 

dimensionality of an experimental problem by converting a large number of measures 612 

into a smaller number of uncorrelated, independent variables called principal 613 

components (PCs) that explain the modes of variation in the experimental data. 614 

 More recently PCA techniques have been adapted and used in biomechanics 615 

research to analyse temporal waveform data in various applications including gait 616 

(Landry, Mckean, Hubley-Kozey, Stanish, & Deluzio, 2007; Muniz & Nadal, 2009), 617 

balance (Pinter, Van Swigchem, Van Soest, & Rozendaal, 2008) ergonomics 618 

(Wrigley, Albert, Deluzio, & Stevenson, 2006), surface electromyography (Hubley-619 

Kozey, Deluzio, Landry, Mcnutt, & Stanish, 2006; Perez & Nussbaum, 2003). 620 

Currently two distinct approaches have been used to apply PCA to the analysis of 621 

biomechanical data sets where the data appear as families of curves or waveforms. 622 

These approaches are: PCA of waveforms (Deluzio & Astephen, 2007; Deluzio, 623 

Wyss, Costigan, Sorbie, & Zee, 1999) or functional PCA (f-PCA) which is generally 624 

categorised as part of a larger analysis process, functional data analysis (FDA) 625 

originally introduced by (Ramsay & Dalzell, 1991). 626 



In PCA of waveforms, the original curves are re-sampled to ensure equal numbers of 627 

records on every waveform and then entered into a large matrix where a Principal 628 

Component Score (PC) is derived for each data point on the waveform. While this 629 

procedure is relatively easy to implement using proprietary software applications 630 

such as IBM® SPSS® (IBM, New York, USA) or Minitab (Pennsylvania, USA), it has 631 

some deficiencies. Firstly, creating data sets of equal length may result in distortion 632 

of the time series. Secondly the smoothing and calculation of derivatives is carried 633 

out separately from PCA procedures resulting in unknown and potentially unwanted 634 

sources of variation entering the PCA. Thirdly and most importantly, in PCA of 635 

waveforms, the data points on the curve are assumed to be independent of each 636 

other, but in reality we know that any point on a curve is correlated to the data points 637 

that precede and follow that point. As a result of these deficiencies it may be difficult 638 

to relate the waveforms described by each PC to specific subjects in the 639 

experimental population. 640 

FDA and f-PCA were devised by Ramsey and Dalzell (1991) in an attempt to rectify 641 

some of the limitations of other approaches. The distinctive feature of functional data 642 

analysis (FDA) is that the entire sequence of measurements for a measurement is 643 

considered as a single entity or function rather than a series of individual data points 644 

(Ryan, et al., 2006). The term Functional in FDA and f-PCA refers to our attention to 645 

the intrinsic nature of measurements we frequently obtain in biomechanics 646 

experiments. While biomechanical data are obtained at various regularly spaced time 647 

points, these measurements can be assumed to be generated by some underlying 648 

function which we can denote as the function: x(t). A further characteristic of the 649 

functional data is that of smoothness. In practise, the smoothing and derivation of 650 

functions are generally linked processes and the decision on the choice of 651 



appropriate basis functions is dependent on the nature of the data being analysed. 652 

For example, if the observed data are periodic, then a Fourier basis may be 653 

appropriate. Alternatively, if the observed functions are locally smooth and non-654 

periodic, then B-splines may be appropriate; if the observed data are noisy but 655 

contain informative “spikes” that need to avoid the effect of severe smoothing, then a 656 

wavelet basis may be appropriate. The final choice of basic functions should provide 657 

the best approximation using a relatively small number of functions. 658 

B-splines have been shown to be useful basis functions for smoothing kinematic data 659 

because their structure is designed to provide the smooth function with the capacity 660 

to accommodate changing local behaviour (Coffey, Harrison, Donoghue, & Hayes, 661 

2011). B-splines consist of polynomial pieces joined at certain values of x (t), called 662 

knots. (Eilers & Marx, 1996) outlined the general properties of a B-spline basis. Once 663 

the knots are known it is relatively easy to compute the B-splines using the recursive 664 

algorithm of de Boor (2001). 665 

The functional form of a PCA (f-PCA) has previously been used to distinguish 666 

differences in kinematic jumping patterns and coordination in groups of children at 667 

various stages of development (Harrison, Ryan, & Hayes, 2007; Ryan, et al., 2006). 668 

The analysis of these data showed that at the early stages of development in the 669 



vertical jump, most subjects’ movement patterns were characterised by the first f-PC 670 

in  671 

Figure 6 and therefore displayed higher levels of variability than found in the later 672 

stages of development. The high scorers in f-PC3 were typically described as more 673 

mature performers and these were subjects who displayed a smoother and quicker 674 



counter-movement which is typical of a more effective stretch-shortening cycle 675 

performance. 676 

 677 
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 679 

Dona’ et al. (2009) applied f-PCA bilaterally to sagittal knee angle and net moment 680 

data in race-walkers of national and international level and found that scatterplots of 681 

f-PC scores provided evidence of technical differences and asymmetries between the 682 

subjects even when traditional analysis (mean ±s curves) was not effective. They 683 

concluded that f-PCA was sensitive enough to detect potentially important technical 684 

differences between higher and lower skilled athletes and therefore f-PCA might 685 

represent a useful and sensitive aid for the analysis of sports movements, if 686 

consistently applied to performance monitoring. f-PCA was also used by Donoghue 687 

et al. (2008) to examine the effects of in-shoe orthoses on the kinematics of the lower 688 

limb in subjects with previous Achilles tendon injury compared to uninjured controls. 689 

Donoghue et al. (2008) provided evidence using f-PCA that in-shoe orthoses 690 

appeared to constrain some movement patterns but restored some aspects of 691 

variability in other movements. Coffey et al. (2011) took this analysis further using an 692 

extension of f-PCA which they called Common f-PCA. This technique is better suited 693 

to analysis of families of curves where repeated measures designs are used. Using 694 

Common f-PCA, Coffey et al. (2011) provided evidence that control subjects had 695 

greater levels of variability in lower limb movement patterns than injured subjects.  696 

All of the above studies highlight the importance of treating variability in the data as a 697 

real, biological phenomenon that has a structure which can be separated from the 698 

noise or error information generated by data acquisition. In this respect f-PCA 699 



appears to be a very useful to aid the investigation of biological variability in 700 

biomechanical studies. 701 

702 



CONCLUSION 703 

This paper has briefly examined the “dual” role that motion variability plays in the 704 

analysis of sports movement, being concurrently a limitation, both in terms of its 705 

function and the way we deal with it, as well as a potentiality. Regardless of the point 706 

of view from which we consider MV, more research is needed to gain a thorough 707 

insight into this issue. For example, there is still lack of: (i) reference values and 708 

database, that could help in the interpretation of movement and coordination 709 

variability in sports; (ii) knowledge of the relationship between causes (e.g. 710 

detrimental behaviours, motor learning) and effects (e.g. changes in the analysed 711 

variables or indices) (Bartlett, et al., 2007; Hamill, et al., 2005; Preatoni, 2007; 712 

Preatoni, et al., 2010a); (iii) integration of the outcomes of the different methods of 713 

investigation; and, (iv) ability in translating complex approaches and results into 714 

suitable information that may be easily read as feedback and thus applied on the 715 

field. 716 

Previous studies investigating MV have looked at functional motor skills such as 717 

walking (e.g. Chau, et al., 2005), whilst other authors have focused their attention on 718 

injury factors (e.g. Hamill, et al., 2005; Hamill, et al., 1999) or on coordinative 719 

patterns (e.g. Seay, Haddad, Van Emmerik, & Hamill, 2006), by studying the 720 

variability in phasing relationships between different elements of the locomotor 721 

system (body segments or joints). Fewer works have concentrated their attention on 722 

the relation between sports skills and MV/CV, with practical implications for 723 

performance monitoring and training purposes. Wilson et al. (2008) studied how 724 

coordination variability changes in relation with skills development in the triple jump. 725 

Preatoni (2007) and Preatoni et al. (2010a) reported different levels of entropy, in 726 



selected variables, between elite and high-level race walkers. Furthermore, Preatoni 727 

(2007, 2010), Preatoni et al. (2010a) and Donà et al. (2009) presented evidence 728 

relating to how advanced methodologies may be an important means for finely 729 

investigating individual peculiarities – e.g. subtle changes over time that may be due 730 

to underlying pathologies 731 

(  732 

Figure 7) – when no apparent changes occur at a macroscopic level. 733 

 734 
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 736 



This paper has considered five methods of analysis of sport movements which are 737 

able to address MV. Discrete and continuous measures of variability have 738 

traditionally viewed variability as an unwanted source of error which is detrimental to 739 

performance. These measures allow the quantification of MV in a way which is not 740 

computationally complex and which does not rely on a very large sample size. In 741 

addition these measures provide information which is easy to interpret and 742 

understand by the end user (athlete or coach). However, similar performances in 743 

sporting events are often the result of different motor strategies, both within and 744 

between individuals and these subtle discrepancies are typically less detectable than 745 

the ones that emerge in clinical studies, and are often concealed by the presence of 746 

invariance. Hence, the conventional use of discrete variables or continuous curves 747 

may be ineffective. When a movement is performed repetitively, the motions of the 748 

body’s segments will exhibit some variability, even for a cyclical motion like running. 749 

A common assumption in many locomotion studies is that increased variability in gait 750 

parameters such as stride length and stride frequency is associated with instability. 751 

Although increased variability in these spatio-temporal patterns of footfalls may 752 

indicate potential gait problems, an understanding regarding the mechanisms 753 

underlying instability requires insight into the dynamics of segmental coordination in 754 

the upper and lower body. DST provides an approach to quantifying variability which 755 

considers a higher order measure of coordinative variability and therefore allows the 756 

potential for analysing subtle differences between individuals/performances and the 757 

possibility of analysing across functional phases of the movement in question. 758 

Unfortunately DST requires the use of large numbers of trials and, maybe as a result 759 

of this, there is currently a lack of research applied to the analysis of sports skills. 760 

Entropy has many of the benefits and drawbacks of DST but unlike DST cannot 761 



provide information regarding the way through which movement variability is 762 

functional. However what entropy can add is the potential for analysing the content or 763 

nature of the MV present in the system and therefore potentially the ability for fine 764 

discrimination between skills. Finally, f-PCA supplements DST and entropy by 765 

creating a function that describes the complete movement, and by giving a tool both 766 

for data reduction and for the interpretation of performance and skills learning factors. 767 

The considerations which need to be taken when quantifying and treating MV have 768 

been discussed in addition to what conclusions we can draw when investigating 769 

sports skills. How a particular movement or motor skill is analysed and the MV 770 

quantified is dependent on the movement in question and the issues the researcher 771 

is trying to address. 772 

 773 

The implications of the issues discussed in this paper are wide reaching. Movement 774 

variability should not simply be treated as noise which needs be eliminated. Equally it 775 

should not be viewed as a solely function element of human movement. Practitioners 776 

need to consider the presence of movement variability in motor skills and adopt 777 

appropriate methodologies which are able to deal with and quantify it. 778 

779 
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FIGURES 1114 

 1115 

Figure 1. Example of the outcoming variability in a well mastered motor task like 1116 

writing. Repeatedly fast-writing the same word generates traces that do not perfectly 1117 

overlap. 1118 

 1119 

 1120 

Figure 2. The athlete’s monitoring scheme. Three key issues may be identified in the 1121 

monitoring process: (I) the robust description of motor characteristics; (II) the 1122 

interpretation of biomechanical measures; (III) the translation of complex 1123 

biomechanical analyses into readily comprehensible information for application on 1124 

the field. 1125 

 1126 



 1127 

Figure 3. Algorithm for the iterative identification and discard of unrepresentative 1128 

curves through the use of ICC (left) and an example of its application (right) when 1129 

multiple repetitions of race walking stance are taken into account and the threshold 1130 

for good repeatability is set at ICCmin= 0.80. 1131 

 1132 



 1133 

Figure 4. Example of a time-series made up of multiple repetitions of the same tasks 1134 

(a) and its corresponding surrogate counterpart (b). Surrogation was here carried out 1135 

by applying the pseudo-periodic surrogate algorithm (Miller, Stergiou, & Kurz, 2006; 1136 

Small, Yu, & Harrison, 2001). 1137 

 1138 



 1139 

Figure 5. Example of CRP calculation based on data from a race walker’s hip and 1140 

knee joint motion. Normalised (Hamill, et al., 1999) phase plane plots concerning the 1141 

hip (a) and the knee (b) angles are used to calculate the respective phase patterns (c 1142 

and d). (d) is then subtracted from (c) to obtain the CRP plot (e). The deviation phase 1143 

(time-to-time standard deviation of the CRP) is reported in (f). Data are normalised to 1144 

100 points, with gait cycles identified by two subsequent toe-offs (TO1 and TO2). HS= 1145 

heel-strike; V= instant when the support leg passes through the projection of the 1146 

centre of mass; U= instant when the knee is unlocked. Bold lines represent mean 1147 

and standard deviation.  1148 



 1149 

 1150 

Figure 6. The first three Functional Principal Components (f-PCs) on unregistered 1151 

data for knee joint function during vertical jump in children The graphs show mean 1152 

ensemble curve with the high scorers for each f-PC being represented by +signs and 1153 

the low scorers for the f-PC represented by – signs. 1154 



 1155 

 1156 

Figure 7. Example showing the potential of advanced studies of movement and 1157 

coordination variability in evidencing underlying changes due to injury. The phase 1158 

plane plots of the hip (a-left) and knee (a-right) joints concerning multiple race 1159 

walking gait cycles pre- (red) and post-injury (green) are here reported, together with 1160 

the outcoming CRP variables (b) (see Figure 5 for annotations). The athlete was 1161 

considered clinically recovered and reported no significant changes in terms of: 1162 

duration of the movement, speed, step length, antero-posterior and vertical ground 1163 

reaction force. However, both entropy measures and phasing relations between joint 1164 



angles manifested a decrease of regularity/variability between the two testing 1165 

session, evidencing that something had changed in the neuro-muscular organisation 1166 

of movements. Only the availability of proper reference values may help in 1167 

interpreting whether the increased variability in the pre-injury test was a detrimental 1168 

factor or whether the higher regularity in the post-injury test was a sign of excessive 1169 

control resulting from the pathology. 1170 
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