812 research outputs found

    Numerical investigation of high-pressure combustion in rocket engines using Flamelet/Progress-variable models

    Full text link
    The present paper deals with the numerical study of high pressure LOx/H2 or LOx/hydrocarbon combustion for propulsion systems. The present research effort is driven by the continued interest in achieving low cost, reliable access to space and more recently, by the renewed interest in hypersonic transportation systems capable of reducing time-to-destination. Moreover, combustion at high pressure has been assumed as a key issue to achieve better propulsive performance and lower environmental impact, as long as the replacement of hydrogen with a hydrocarbon, to reduce the costs related to ground operations and increase flexibility. The current work provides a model for the numerical simulation of high- pressure turbulent combustion employing detailed chemistry description, embedded in a RANS equations solver with a Low Reynolds number k-omega turbulence model. The model used to study such a combustion phenomenon is an extension of the standard flamelet-progress-variable (FPV) turbulent combustion model combined with a Reynolds Averaged Navier-Stokes equation Solver (RANS). In the FPV model, all of the thermo-chemical quantities are evaluated by evolving the mixture fraction Z and a progress variable C. When using a turbulence model in conjunction with FPV model, a probability density function (PDF) is required to evaluate statistical averages of chemical quantities. The choice of such PDF must be a compromise between computational costs and accuracy level. State- of-the-art FPV models are built presuming the functional shape of the joint PDF of Z and C in order to evaluate Favre-averages of thermodynamic quantities. The model here proposed evaluates the most probable joint distribution of Z and C without any assumption on their behavior.Comment: presented at AIAA Scitech 201

    Water permeation through stratum corneum lipid bilayers from atomistic simulations

    Get PDF
    Stratum corneum, the outermost layer of skin, consists of keratin filled rigid non-viable corneocyte cells surrounded by multilayers of lipids. The lipid layer is responsible for the barrier properties of the skin. We calculate the excess chemical potential and diffusivity of water as a function of depth in lipid bilayers with compositions representative of the stratum corneum using atomistic molecular dynamics simulations. The maximum in the excess free energy of water inside the lipid bilayers is found to be twice that of water in phospholipid bilayers at the same temperature. Permeability, which decreases exponentially with the free energy barrier, is reduced by several orders of magnitude as compared to with phospholipid bilayers. The average time it takes for a water molecule to cross the bilayer is calculated by solving the Smoluchowski equation in presence of the free energy barrier. For a bilayer composed of a 2:2:1 molar ratio of ceramide NS 24:0, cholesterol and free fatty acid 24:0 at 300K, we estimate the permeability P=3.7e-9 cm/s and the average crossing time \tau_{av}=0.69 ms. The permeability is about 30 times smaller than existing experimental results on mammalian skin sections.Comment: latex, 8 pages, 6 figure

    Understanding the formation of deep eutectic solvents: betaine as a universal hydrogen bond acceptor

    Get PDF
    © 2020 Wiley-VCH GmbH The mechanism of formation of betaine-based deep eutectic solvents (DES) is presented for the first time. Due to its polarity unbalance, it was found that betaine displays strong negative deviations from ideality when mixed with a variety of different organic substances. These results pave the way for a comprehensive design of novel deep eutectic solvents. A connection to biologically relevant systems was made using betaine (osmolyte) and urea (protein denaturant), showing that these two compounds formed a DES, the molecular interactions of which were greatly enhanced in the presence of water.This work was developed within the scope of the projects CICECO-Aveiro Institute of Materials, UIDB/50011/2020 & UIDP/50011/2020, financed by national funds through the Portuguese Foundation for Science and Technology/MCTES, and CIMO-Mountain Research Center, UIDB/00690/2020, financed by national funds through the FCT/MEC and when appropriate cofinanced by FEDER under the PT2020 Partnership Agreement.info:eu-repo/semantics/publishedVersio

    Rapid local anesthesia in humans using minimally invasive microneedles

    Get PDF
    Objective: This study tested the hypothesis that minimally invasive microneedles cause less pain during injection of lidocaine, but induce local anesthesia in humans with the same rapid onset and efficacy as intradermal lidocaine injection using hypodermic needles. Methods: This study was a randomized, single-blinded, within participants, controlled design. Hollow, 500-mm long microneedles were used to inject lidocaine to the forearm of 15 human participants. The associated pain was recorded using a visual analog (VAS) scale. The area and depth of numbness were determined at 0, 7.5, and 15 minutes after injection. Lidocaine was also injected to the dorsum of the hand near a vein, followed by placement of an intravenous catheter and measurement of associated pain. A 26-gauge intradermal bevel hypodermic needle similarly administered lidocaine on the opposite forearm/hand to serve as the positive control. Results: VAS pain scores revealed that injection using microneedles was significantly less painful than hypodermic needles for both the forearm and dorsum of the hand injections. However, there was no significant difference in the area or depth of the resulting numbness between the 2 treatment methods at any time point (0, 7.5, and 15 min) indicating that microneedles had immediate onset and were as effective as hypodermic needles in inducing dermal anesthesia. Moreover, insertion of an intravenous catheter immediately after lidocaine injection on the dorsum of the hand led to comparable pain scores for the microneedle and hypodermic needle treated sites, further confirming efficacy of microneedles in inducing rapid local anesthesia. Lastly, 77% of the participants preferred microneedles and 80% indicated that they did not consider microneedles to be painful. Discussion: This study demonstrates for the first time that microneedle-based lidocaine injection is as rapid and as effective as hypodermic injection in inducing local anesthesia while resulting in significantly less pain during injection

    Predicting the solvation of organic compounds in aqueous environments: from alkanes and alcohols to pharmaceuticals

    Get PDF
    The development of accurate models to predict the solvation, solubility, and partitioning of nonpolar and amphiphilic compounds in aqueous environments remains an important challenge. We develop state-of-the-art group-interaction models that deliver an accurate description of the thermodynamic properties of alkanes and alcohols in aqueous solution. The group-contribution formulation of the statistical associating fluid theory based on potentials with a variable Mie form (SAFT-γ Mie) is shown to provide accurate predictions of the phase equilibria, including liquid–liquid equilibria, solubility, free energies of solvation, and other infinite-dilution properties. The transferability of the model is further exemplified with predictions of octanol–water partitioning and solubility for a range of organic and pharmaceutically relevant compounds. Our SAFT-γ Mie platform is reliable for the prediction of challenging properties such as mutual solubilities of water and organic compounds which can span over 10 orders of magnitude, while remaining generic in its applicability to a wide range of compounds and thermodynamic conditions. Our work sheds light on contradictory findings related to alkane–water solubility data and the suitability of models that do not account explicitly for polarity

    Solubility and Nucleation of Methyl Stearate as a Function of Crystallization Environment

    Get PDF
    Crystallization studies of methyl stearate from supersaturated dodecane, kerosene, and toluene solutions reveal strong evidence that solvent choice influences solubility and nucleation behavior. Solute solubility is less than ideal with toluene, kerosene, and dodecane, respectively, exhibiting the closest behavior to ideality, the latter consistent with the highest solvation. Polythermal crystallization studies using the Kashchiev–Borissova–Hammond–Roberts (KBHR) model [Kashchiev et al. J. Phys. Chem. B 2010, 114, 5441; Kashchiev et al. J. Cryst. Growth 2010, 312, 698; Camacho et al. CrystEngComm 2014, 16, 974] reveal a progressive nucleation (PN) mechanism with crystallite interfacial tension (γeff) values between 0.94 and 1.55 mJ/m2, between 1.21 and 1.91 mJ/m2, and between 1.18 and 1.88 mJ/m2 for dodecane, kerosene, and toluene, respectively. Nucleation rates at the critical undercooling lie between 4.56 × 1016 and 1.79 × 1017 nuclei/mL·s, with the highest rates associated with crystallization from kerosene solutions. Iso-supersaturation nucleation rates are the highest for dodecane ranging from 2.39 × 1017 to 3.63 × 1018 nuclei/mL·s. Nucleation in toluene appears to be hindered by its relatively higher interfacial tension, which is associated with nucleation rates about an order of magnitude less than those obtained for dodecane
    • …
    corecore