732 research outputs found

    Methyl-β-cyclodextrin restores the structure and function of pulmonary surfactant films impaired by cholesterol

    Get PDF
    AbstractPulmonary surfactant, a defined mixture of lipids and proteins, imparts very low surface tension to the lung–air interface by forming an incompressible film. In acute respiratory distress syndrome and other respiratory conditions, this function is impaired by a number of factors, among which is an increase of cholesterol in surfactant. The current study shows in vitro that cholesterol can be extracted from surfactant and function subsequently restored to dysfunctional surfactant films in a dose-dependent manner by methyl-β-cyclodextrin (MβCD). Bovine lipid extract surfactant was supplemented with cholesterol to serve as a model of dysfunctional surfactant. Likewise, when cholesterol in a complex with MβCD (“water-soluble cholesterol”) was added in aqueous solution, surfactant films were rendered dysfunctional. Atomic force microscopy showed recovery of function by MβCD is accompanied by the re-establishment of the native film structure of a lipid monolayer with scattered areas of lipid bilayer stacks, whereas dysfunctional films lacked bilayers. The current study expands upon a recent perspective of surfactant inactivation in disease and suggests a potential treatment

    Spinodal-assisted crystallization in polymer melts

    Get PDF
    Recent experiments in some polymer melts quenched below the melting temperature have reported spinodal kinetics in small-angle x-ray scattering before the emergence of a crystalline structure. To explain these observations we propose that the coupling between density and chain conformation induces a liquid-liquid binodal within the equilibrium liquid-crystalline solid coexistence region. A simple phenomenological theory is developed to illustrate this idea, and several experimentally testable consequences are discussed. Shear is shown to enhance the kinetic role of the hidden binodal

    The Right Place at the Right Time: Creative Spaces in Libraries

    Get PDF
    Purpose This essay explores the recent trend in libraries: that of the establishment of spaces specifically set aside for creative work. The rise of these dedicated creative spaces is owed to a confluence of factors that happen to be finding their expression together in recent years. This essay examines the history of these spaces and explores the factors that gave rise to them and will fuel them moving forward. Design/Methodology/Approach A viewpoint piece, this essay combines historical research and historical/comparative analyses to examine the ways by which libraries have supported creative work in the past and how they may continue to do so into the 21st century. Findings The key threads brought together include a societal recognition of the value of creativity and related skills and attributes; the philosophies, values, and missions of libraries in both their longstanding forms and in recent evolutions; the rise of participatory culture as a result of inexpensive technologies; improved means to build community and share results of efforts; and library experience and historical practice in matters related to creativity. The chapter concludes with advice for those interested in the establishment of such spaces, grounding those reflections in the author’s experiences in developing a new creative space at Virginia Commonwealth University. Originality/value While a number of pieces have been written that discuss the practicalities of developing certain kinds of creative spaces, very little has been written that situates these spaces in larger social and library professional contexts; this essay begins to fill that gap

    Hobson’s choice? Constraints on accessing spaces of creative production

    Get PDF
    Successful creative production is often documented to occur in urban areas that are more likely to be diverse, a source of human capital and the site of dense interactions. These accounts chart how, historically, creative industries have clustered in areas where space was once cheap in the city centre fringe and inner city areas, often leading to the development of a creative milieu, and thereby stimulating further creative production. Historical accounts of the development of creative areas demonstrate the crucial role of accessible low-cost business premises. This article reports on the findings of a case study that investigated the location decisions of firms in selected creative industry sectors in Greater Manchester. The study found that, while creative activity remains highly concentrated in the city centre, creative space there is being squeezed and some creative production is decentralizing in order to access cheaper premises. The article argues that the location choices of creative industry firms are being constrained by the extensive city centre regeneration, with the most vulnerable firms, notably the smallest and youngest, facing a Hobson’s choice of being able to access low-cost premises only in the periphery. This disrupts the delicate balance needed to sustain production and begs the broader question as to how the creative economy fits into the existing urban fabric, alongside the competing demands placed on space within a transforming industrial conurbation

    Stabilization of an ambient-pressure collapsed tetragonal phase in CaFe2As2 and tuning of the orthorhombic-antiferromagnetic transition temperature by over 70 K via control of nanoscale precipitates

    Get PDF
    We have found a remarkably large response of the transition temperature of CaFe2As2 single crystals grown from excess FeAs to annealing and quenching temperature. Whereas crystals that are annealed at 400ˆC exhibit a first-order phase transition from a high-temperature tetragonal to a low-temperature orthorhombic and antiferromagnetic state near 170 K, crystals that have been quenched from 960ˆC exhibit a transition from a high-temperature tetragonal phase to a low-temperature, nonmagnetic, collapsed tetragonal phase below 100 K. By use of temperature-dependent electrical resistivity, magnetic susceptibility, x-ray diffraction, Mössbauer spectroscopy, and nuclear magnetic resonance measurements we have been able to demonstrate that the transition temperature can be reduced in a monotonic fashion by varying the annealing or quenching temperature from 400ˆ to 850ˆC with the low-temperature state remaining antiferromagnetic for transition temperatures larger than 100 K and becoming collapsed tetragonal, nonmagnetic for transition temperatures below 90 K. This suppression of the orthorhombic-antiferromagnetic phase transition and its ultimate replacement with the collapsed tetragonal, nonmagnetic phase is similar to what has been observed for CaFe2As2 under hydrostatic pressure. Transmission electron microscopy studies indicate that there is a temperature-dependent width of formation of CaFe2As2 with a decreasing amount of excess Fe and As being soluble in the single crystal at lower annealing temperatures. For samples quenched from 960ˆC there is a fine (of order 10 nm) semiuniform distribution of precipitate that can be associated with an average strain field, whereas for samples annealed at 400ˆC the excess Fe and As form mesoscopic grains that induce little strain throughout the CaFe2As2 lattice

    A Minimal Threshold of c-di-GMP Is Essential for Fruiting Body Formation and Sporulation in Myxococcus xanthus

    Get PDF
    Generally, the second messenger bis-(3’-5’)-cyclic dimeric GMP (c-di-GMP) regulates the switch between motile and sessile lifestyles in bacteria. Here, we show that c-di-GMP is an essential regulator of multicellular development in the social bacterium Myxococcus xanthus. In response to starvation, M. xanthus initiates a developmental program that culminates in formation of spore-filled fruiting bodies. We show that c-di-GMP accumulates at elevated levels during development and that this increase is essential for completion of development whereas excess c-di-GMP does not interfere with development. MXAN3735 (renamed DmxB) is identified as a diguanylate cyclase that only functions during development and is responsible for this increased c-di-GMP accumulation. DmxB synthesis is induced in response to starvation, thereby restricting DmxB activity to development. DmxB is essential for development and functions downstream of the Dif chemosensory system to stimulate exopolysaccharide accumulation by inducing transcription of a subset of the genes encoding proteins involved in exopolysaccharide synthesis. The developmental defects in the dmxB mutant are non-cell autonomous and rescued by co-development with a strain proficient in exopolysaccharide synthesis, suggesting reduced exopolysaccharide accumulation as the causative defect in this mutant. The NtrC-like transcriptional regulator EpsI/Nla24, which is required for exopolysaccharide accumulation, is identified as a c-diGMP receptor, and thus a putative target for DmxB generated c-di-GMP. Because DmxB can be—at least partially—functionally replaced by a heterologous diguanylate cyclase, these results altogether suggest a model in which a minimum threshold level of c-di-GMP is essential for the successful completion of multicellular development in M. xanthus

    Relationship between psychological and biological factors and physical activity and exercise behaviour in Filipino students

    Get PDF
    The aim of the present study was threefold. Firstly, it investigated whether a general measure or specific measure of motivational orientation was better in describing the relationship between motivation and exercise behaviour. Secondly, it examined the relationship between the four most popular indirect methods of body composition assessment and physical activity and exercise patterns. Thirdly, the interaction between motivation and body composition on physical activity and exercise behaviour was explored in a sample of 275 Filipino male and female students. Males were found to have higher levels of exercise whereas females had higher levels of physical activity. Furthermore, general self-motivation together with body weight and percentage body fat were found to be the best predictor of exercise behaviour whereas the tension/pressure subscale of the ‘Intrinsic Motivation Inventory’ (IMI) was the best predictor of levels of physical activity. However, significant gender differences were observed. That is, for the males only self-motivation and for the females only body weight and BMI predicted exercise behaviour. Also, tension/pressure predicted physical activity levels for the females but not the males. No inverse relationship was found between the four body composition measures and exercise and physical activity behaviour. The results support the notion that the psychobiological approach might be particularly relevant for high intensity exercise situations but also highlights some important gender differences. Finally, the results of this study emphasise the need for more cross-cultural research
    • …
    corecore