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Pulmonary surfactant, a defined mixture of lipids and proteins, imparts very low surface tension to the lung–
air interface by forming an incompressible film. In acute respiratory distress syndrome and other respiratory
conditions, this function is impaired by a number of factors, among which is an increase of cholesterol in
surfactant. The current study shows in vitro that cholesterol can be extracted from surfactant and function
subsequently restored to dysfunctional surfactant films in a dose-dependent manner by methyl-β-
cyclodextrin (MβCD). Bovine lipid extract surfactant was supplemented with cholesterol to serve as a
model of dysfunctional surfactant. Likewise, when cholesterol in a complex with MβCD (“water-soluble
cholesterol”) was added in aqueous solution, surfactant films were rendered dysfunctional. Atomic force
microscopy showed recovery of function by MβCD is accompanied by the re-establishment of the native film
structure of a lipid monolayer with scattered areas of lipid bilayer stacks, whereas dysfunctional films lacked
bilayers. The current study expands upon a recent perspective of surfactant inactivation in disease and
suggests a potential treatment.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Pulmonary surfactant forms a molecular film at the hydrated air-
alveolar interface and reduces surface tension, from 70mN/m at a free
air–water interface to an equilibrium value of ∼23 mN/m. As the area
of the alveolar interface decreases upon expiration, the molecular film
becomes compressed and the surface tension drops further, a critical
function first established in vitro using lung extracts [1,2]. Direct
measurements in healthy lungs reveal a surface tension of almost zero
at functional reserve capacity [3].

Avery [4] established impaired lung function in respiratory
distress syndrome (RDS) in premature infants is rooted in a lack of
pulmonary surfactant. RDS is now successfully treated by intratra-
cheal administration of exogenous surfactant [5–12]. Acute respira-
tory distress syndrome (ARDS), a common (incidence 1.5 to 5.3/105

population/year) and deadly (mortality rate of 36% to 60%) [13–17]
spectrum of disease is associated with dysfunctional surfactant rather
than a lack thereof. Abnormally high surface tension caused by
surfactant dysfunction results in diminished lung compliance, a
decreased lung volume, reduced airway patency and potentially
ctant with cholesterol added;
, quasi-static cycle; D, dynamic

).
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severe hypoxemia. Pulmonary surfactant dysfunction has also been
implicatedwith the reduced patency of small airways in cystic fibrosis
(CF) (e.g. [18,19]), with the development of acute lung injury (ALI) via
ventilator induced lung injury (VILI), and other diseases of the lung.
Surfactant dysfunction in ARDS/ALI has been targeted for treatment
with replacement surfactant therapy. However, unlike the situation
with RDS, success has been inconsistent outside of paediatric and
possibly direct lung injury-induced ARDS/ALI (for a review, see [20]).
It is now generally accepted that successful treatment for ARDS/ALI
will depend on an in-depth understanding of relevant impairment
mechanisms.

Proportionally increased cholesterol exerts a strong inhibitory
effect on surfactant function [21,22]. Cholesterol, which makes up
about half of the neutral lipids in surfactant [23,24], is elevated from
a physiological level of 5% to 8% w/w with respect to phospholipids
to about 20% w/w in animal models of lung injury [25] and 16% to
40% w/w in human ARDS [26]. In an animal model of VILI,
cholesterol in surfactant was elevated almost two fold over controls
[27] and was directly responsible for surfactant inhibition [28]. A
similar relationship has yet to be thoroughly evaluated in ARDS,
however.

The relatively hydrophobic interior of the toroid-shaped methyl-
β-cyclodextrin (MβCD) molecule is able to host various hydrophobic
molecules, including cholesterol. High concentrations of MβCD can
extract substantial amounts of cholesterol from cell membranes [29],
unilamellar phospholipid/cholesterol vesicles [30], and interfacial
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surfactant films [30] into a water-soluble cholesterol–cyclodextrin
complex. In a related application, MβCD cholesterol-complexes
(“water-soluble cholesterol”) can be used to deliver cholesterol to
plasma membranes in cell cultures. In the current study, we
investigated whether impairment of surfactant films could be
reversed in vitro by exposure of spread films to MβCD and whether
normal surfactant could be rendered dysfunction by exposure to
water-soluble cholesterol.

We investigated films formed from bovine lipid extract surfactant
(BLES), used clinically in the treatment of surfactant deficiencies [31].
BLES contains all of the lipid and protein components of natural
surfactant, with the exceptions of the hydrophilic surfactant proteins
SP-A and SP-D. Moreover, cholesterol content is reduced in BLES to
approximately 1.5% w/w with respect to phospholipids [31]. Here,
native BLES was used to model normal surfactant, and the range of
surfactants in the diseased lung was mimicked by the addition of 15%,
20% or 30% w/w cholesterol to BLES with respect to phospholipids
(chol-BLES). To determine if physiological function could be restored,
chol-BLES films containing various proportions of cholesterol were
spread on buffer containing MβCD at concentrations of 5, 10 or
40 mg/mL. Lastly, the molecular structures of native BLES, 20% chol-
BLES, and MβCD-treated 20% chol-BLES films were imaged using
atomic force microscopy (AFM).

A captive bubble surfactometer (CBS) was used for measuring
surfactant function, since this technique comes closest to mimicking
lung function as determined in vivo from pressure-volume studies
[32]. Near-physiological conditions modelled in the CBS include
temperature (37 °C), cycling rates (20 cycles/min), and interfacial
adsorption from minute volumes of concentrated (27 mg/mL)
surfactant containing dense aggregates [22]. Functional assessment
of surfactant beganwithmeasurements of film formation, as indicated
by the drop in surface tension of an air–buffer interface upon
surfactant spreading. Subsequently, surface tension upon slow
(quasi-static, QS) and rapid (dynamic, D) surface area reduction and
expansionwasmeasured. Theminimal surface tension (MST) reached
during compression was the primary indicator of surfactant function
in this test.

2. Materials and methods

2.1. Surfactant preparation

BLES (a kind gift from BLES Biochemicals Inc, London, Ontario; see
Yu et al. [31] for the detailed composition of BLES) suspended at a
phospholipid concentration of 27 mg/mL in non-buffered (pH 5–6)
saline with 2.5 mM calcium was used with or without the addition of
15, 20 or 30% (w/w) cholesterol (Sigma Chemicals, St. Louis, MO). In
order to add cholesterol quantitatively to BLES, a lipid extraction
procedure was performed as described in [21]. The phospholipid/
cholesterol solution was dried under N2 and re-suspended in buffer
(140 mM NaCl, 10 mM HEPES and 2.5 mM CaCl2; pH 6.9) to obtain an
aqueous suspension of BLES and cholesterol at a concentration of
27mg phospholipids/mL. Native BLES (i.e. without cholesterol added)
underwent the same extraction procedure to ensure differences in the
surface activity between normal BLES and chol-BLES were solely due
to the difference in cholesterol content.

2.2. Surface activity assessment

Surface activity of surfactant was determined using a computer
controlled CBS as described in detail in refs. [21,33], with the
following modification: a transparent capillary was used to deposit
a ∼0.5 μL volume of surfactant near the air–buffer interface within the
CBS under precise visual control. Following the introduction of
surfactant into the chamber, a 5-min film formation period (initial
adsorption, IA) elapsed, during which time the bubble was not
manipulated. Changes in surface tension and interfacial area were
monitored as described in ref. [34]. Experiments in which the bubble
contacted the microsyringe capillary were excluded from the IA
analysis. Quasi-static cycling commenced 5 min after rapid expansion
of the bubble, during which the bubble volume was first reduced and
then enlarged by altering the internal volume of the chamber in a
stepwise fashion over 4 compression–expansion cycles. In the
dynamic cycling portion of the experiment, bubble volume was
smoothly and rapidly changed over the same range at a rate of 20
cycles/min. Surface tension values are reported as mean±SEM. The
temperature of the subphase was maintained at a constant value of
37 °C throughout the experiments using an automated heated fan and
water bath [33].

To evaluate the effect of MβCD, powdered MβCD (Sigma Aldrich,
Catalogue-Nr. C4555) was dissolved in buffer to a final concentration
of 40, 10, or 5 mg/mL and added to the CBS chamber prior to the
addition of surfactant. Assessment of surface activity as described
above was conducted after spreading chol-BLES, immediately and
again after a 0.5 h or 1–2 h waiting period. To probe the effect of
water-soluble cholesterol on BLES, an MβCD–cholesterol complex
(“water-soluble cholesterol”, Sigma Aldrich, Catalogue-Nr. C4951)
was added to the buffer to a final concentration of 40 mg/mL before
spreading BLES.

2.3. AFM imaging

For visualization of the structure of surfactant films, a Langmuir
surface balance (surface area=750 cm2) (Nima Technology, Cov-
entry, Great Britain) was employed. Surface pressure and area were
measured with a PS4 pressure sensor and IU4 micro-processor
interface (Nima, Coventry, Great Britain). The trough was thoroughly
cleaned and calibrated using standard buffer. Surfactant films were
spread at the air-aqueous interface from a 27-mg phospholipid/mL
chloroform solution until the surface pressure reached 10–20 mN/m
(γ∼55–65 mN/m). The system was allowed to equilibrate for
10 min to allow the chloroform to evaporate and the surfactant to
diffuse. Concentrated MβCD was injected beneath the surface of the
film to an appropriate final concentration when indicated, and the
system was allowed to equilibrate for a further 30 min. Next, the
film area was reduced at a rate of 100 cm2/min until γ ∼26 mN/m
was reached at which time a sample of each film was collected on a
mica support by the Langmuir–Blodgett transfer for AFM imaging.
The samples were collected upon area reduction at the end of a
shoulder in the area-surface tension isotherm. For deposition, a mica
support was first lowered across the interface at a speed of 45 mm/
min and then retracted at 25 mm/min. A film was deposited upon
the upstroke while the surface tension was kept constant. To obtain
AFM images of the topography of these samples, a Nanowizard AFM
(JPK Instruments, Berlin, Germany) was used with intermittent
contact mode silicon cantilevers (NCH-20, Nanoworld, Neuchatel,
Switzerland).

2.4. Statistical analysis of CBS data

Nonparametric tests (SPSS 14.0) of differences in mean MST
attained during QS and D cycling, and at various times during IA were
performed with pb0.05 used as the standard for significance in all
cases. MeanMST values for QS1 and D20were considered to represent
the initial effect of treatment and the stability of this effect,
respectively. The Freidman test for multiple related measures was
used first to test for main within treatment effects and the Wilcoxon
paired related measures test was used for subsequent orthogonal
comparisons after overall significance was determined. The Kruskal–
Wallis and the Mann–Whitney U tests for independent samples were
similarly used to determine overall between treatment effects and to
make subsequent orthogonal comparisons.
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3. Results

3.1. Untreated controls

Upon spreading, BLES lowered the surface tension of the air–buffer
interface from ∼70 mN/m to an equilibrium value of ∼21 mN/m,
oftenwithin a fraction of a second (Fig. 1). The surface tension of these
films readily neared zero during each of the quasi-static and the
Fig. 1. Initial adsorption (film formation) at 37 °C of 20% chol-BLES and native BLES
(27 mg/mL) in the presence of MβCD. (A) Mean surface tension over the first 10 s after
injection of 20% chol-BLES in 0 (n=9), 5 (n=3), 10 (n=13), or 40 mg/mL (n=12) of
MβCD. (⁎⁎pb0.01 compared to mean surface tension of 20% chol-BLES at all time points
measured, except 0.1 s). Error bars have been omitted for clarity. (B) Mean surface
tension over the first 10 s after injection of native BLES in 0 (n=5) or 40mg/mL (n=4)
of MβCD. (⁎pb0.05 compared to mean surface tension of native BLES at all time points
measured). (C) Mean surface tension 300 s after injection of native BLES or 20% chol-
BLES into subphases containing different concentrations of MβCD. Error bars: positive
standard error of the mean (SEM). (⁎⁎pb0.01, ⁎pb0.05).
dynamic compression and expansion cycles (Fig. 2, see also [21]).
BLES films required minimal area reduction (10–15%) to bring about
low surface tension as indicated by the slope of the surface tension
over area curve. This behaviour may be regarded as the effect of a
layer of already tightly packed surfactant phospholipids becoming
even more compacted at the air–water interface [35].

Much the same as BLES, untreated 20% chol-BLES rapidly lowered
surface tension upon spreading to an equilibrium value ∼23 mN/m
(Fig. 1). There was no significant difference in mean surface tension
between BLES and 20% chol-BLES at any time point measured during
film formation (pN0.05). Upon compression, however, 20% and 30%
chol-BLES films did not lower surface tension below ∼16 mN/m
irrespective of the extent of area reduction, giving rise to an extended
plateau in the area-surface tension isotherm (Fig. 3, see also [21]). This
plateau indicates continuous film collapse from the interface into the
buffer [35]. Compression of 15% chol-BLES films lowered surface
tension to b5 mN/m with substantial area reduction (∼70%) in D1–5
(data not shown), but these low surface tensions were not reached by
D20 (Fig. 4), indicating functional deterioration.

3.2. The effect of MβCD on chol-BLES function

Surface tension was assessed during IA at set time points over the
first 5 min of film formation using 20% chol-BLES and various
concentrations of MβCD (Fig. 1). Surface tension decreased to near
equilibrium values very rapidly (b1 s), which was likely the result of
our injection technique [22]. Increasing concentrations of MβCD up to
10 mg/mL did not significantly affect surface tension over the first
10 s compared to untreated chol-BLES. However, mean surface
tensions in the presence of 40 mg/mL MβCD were significantly
higher at all time points (except 0.1 s) compared to untreated chol-
Fig. 2. Functional surfactant behaviour during CBS cycling. (A) An image of a bubble
with functional surfactant (BLES) being compressed as the surface tension nears zero.
(B) Surface tension over area graph corresponding to the bubble shown in (A). Black
lines indicate the first quasi-static cycle with subsequent quasi-static cycles shown in
increasingly lighter shades of gray. The compression part for each cycle (i.e. area
reduction) is to the right and below the respective expansion part of each cycle.



Fig. 3. Dysfunctional surfactant behaviour during CBS cycling. (A) The image of a bubble
with inhibited surfactant (20% chol-BLES) being compressed to a surface tension near
19 mN/m. (B) Surface tension over area graph corresponding to the bubble shown in
(A). Black lines indicate the first quasi-static cycle with subsequent quasi-static cycles
shown in increasingly lighter shades of gray.
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BLES (Fig. 1). Also, there was a significant trend towards increased
equilibrium surface tensions as the subphase concentration of MβCD
was increased, an effect which was observed previously [30] to a
greater extent.

Surfactant function was rapidly and stably restored for 20% and
30% chol-BLES at 40 mg/mLMβCD (Fig. 4). Upon treatment, the mean
MST at QS1 of 20% chol-BLES (10.3±2.0 mN/m, n=11) was not
significantly different from the mean MST of treated 30% chol-BLES
(7.5±3.3 mN/m, n=3) (p=0.815). Likewise, the mean MST of 20%
chol-BLES and 30% chol-BLES treated with 40 mg/mL MβCD at D20
(1.8±0.2 and 1.5±0.4, respectively) were not statistically different
Fig. 4. Mean MST of 15%, 20%, and 30% chol-BLES films at D20 as functions of MβCD
concentration. 15% chol-BLES was tested at 0 (n=4), 5 (n=3), and 10 mg/mL (n=3)
of MβCD. 20% chol-BLES was tested at 0 (n=9/4), 5 (n=8/8), 10 (n=15/11), and
40 mg/mL (n=11/6) of MβCD were tested at 0 h and 0.5 h (n values refer to the
respective time intervals). 30% chol-BLES was tested at 0 (n=3), 10 (n=3), and
40 mg/mL (n=3) of MβCD. Error bars: positive SEM. (⁎pb0.05 compared to meanMST
of 20% chol-BLES at the same concentration of MβCD).
(p=0.612). The ability of a film to reach a near-zero MST after
repeated rapid cycling (i.e. D20) indicates the ability of surfactant to
functionally readsorb to the interface from surface-associated
reservoirs formed during compression [33]. However, at 10 mg/mL
MβCD, 20% chol-BLES reached a significantly lower mean MST at
D20 (4.9±1.9 mN/m, n=15) than 30% chol-BLES (16.6±0.1 mN/m,
n=3; p=0.010), suggesting that the ability of MβCD to restore
surfactant function is affected by both surfactant cholesterol content
and MβCD concentration. Similarly, 10 mg/mL MβCD lowered mean
MST of 15% chol-BLES at D20 (1.7±0.2 mN/m, n=3) to a greater
extent than in 20% chol-BLES, although this difference did not
achieve significance (p=0.484). Interestingly, at 5 mg/mL MβCD,
meanMST atD20was slightly but significantly higher in 15% chol-BLES
(18.7±0.3 mN/m, n=3) than in 20% chol-BLES (15.1±1.4 mN/m,
n=8; p=0.040).

3.3. Cycling-dependent effects of MβCD on 20% chol-BLES

DuringQS1 of 20% chol-BLES samples treatedwith40mg/mLMβCD,
the mean MST value (10.3±2.0 mN/m, n=11) was intermediate
between the values for untreated chol-BLES (18.8±0.3 mN/m, n=9,
p=0.006) and native BLES (1.2±0.1 mN/m, n=5, pb0.0005) (Fig. 5).
The function of treated chol-BLES further improved over consecutive
cycles, as there was a significant difference between mean MST at QS1
and D20 (p=0.005). At D20, the mean MST of treated chol-BLES films
was not significantly different from the equivalent measurement for
native BLES films (1.8±0.2 mN/m and 1.4±0.6 mN/m respectively,
p=0.206). Thirtyminutes following treatment, meanMST of chol-BLES
films (n=6) at QS1 was 11.2±1.8 mN/m and 2.8±1.1 mN/m at the
D20 stage (Fig. 5). Neither value was significantly different from the
corresponding value initially after MβCD exposure (p=0.208 and
p=0.600, respectively). One to 2 h following the initial round of cycling,
meanMSTof treated chol-BLES (n=6)atQS1was13.6±1.2mN/mand
2.0±0.3 mN/m by D20. Again, neither value was significantly different
from the corresponding value immediately after MβCD treatment
(p=0.138 and p=0.498, respectively). In summary,MβCD restores the
ability of a cholesterol-inhibited pulmonary surfactant to reach lowMST
in a cycling- but not time- dependent pattern.

3.4. The effect of MβCD on native BLES function

To establish whether MβCD negatively affects normal surfactant
function, native BLES was treated with 40 mg/mL MβCD (n=4).
Firstly, the equilibrium surface tension was increased (p=0.014)
after adsorption of native BLES in 40mg/mLMβCD (23.6±0.6 mN/m,
n=4) compared to BLES adsorbed without MβCD present (21.2±
0.2 mN/m, n=5) (Fig. 1). During QS1, the area reduction required
to achieve MST in the presence of 40 mg/mL of MβCD was ∼70%
(Fig. 6A, cf. Fig. 2). This may have been because MβCD molecules
had formed a film at the interface that was eventually driven off the
interface by surfactant adsorption. Consistent with this interpreta-
tion, we observed surface tensions of ∼40–50 mN/m with bubbles in
the presence of MβCD before any surfactant was injected (Fig. 1)
suggesting MβCD is weakly surface active. From the second quasi-
static cycle onwards, the function of BLES was unaffected by the
presence of MβCD (Fig. 6) and appeared indistinguishable from
native BLES (n=5) in terms of mean MST at D20 (1.7±0.2 mN/m
and 1.4±0.6 mN/m, respectively, p=0.140). Hence, MβCD did not
have a lasting effect on the surface activity of native BLES.

3.5. The effect of water-soluble cholesterol on the function of surfactant

To further evaluate the action of MβCD and cholesterol on
surfactant, we exposed native BLES to buffer containing 40 mg/mL
of “water-soluble cholesterol” (equivalent to 1.6 mg/mL cholesterol
solubilized with MβCD, molar ratio: cholesterol/MβCD≈1/7). The



Fig. 5. Surface activity of 20% chol-BLES treated with 40 mg/mL MβCD (A) A representative example of dynamic surface tension-area isotherms for MβCD-treated 20% chol-BLES.
Black lines indicate the first cycle with subsequent cycles shown in increasingly lighter shades of gray. (B) Mean MST during CBS cycling stages (initial adsorption, IA; quasi static
cycles 1 to 4, QS1–4; and dynamic cycles 1, 2, 5, 10 and 20, D1–20) with native BLES (n=5), 20% chol-BLES (n=9), and 20% chol-BLES treated with 40 mg/mL MβCD (0 h: n=11;
0.5 h: n=6; N1 h: n=6). Error bars: positive SEM.

Fig. 6. Surface activity of native BLES (without cholesterol added) after treatment with
MβCD. (A) A representative example of quasi-static isotherms for native BLES in the
presence of 40 mg/mL MβCD (t=0 h). Black lines indicate the first cycle with
subsequent cycles shown in increasingly lighter shades of gray. (B) Mean MST during
CBS cycling stages (initial adsorption, IA; quasi static cycles 1 to 4, QS1–4; and dynamic
cycles 1, 2, 5, 10 and 20, D1–20) for native BLES with (n=4) or without (n=5) 40 mg/
mL MBCD. Testing was carried out immediately after injection of BLES into MBCD (“0
h”), 0.5 h after the first test (“0.5 h”), and 1–2 h after the first test (“N1 h”) for trials with
MBCD. Error bars: positive SEM.
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mean MST of BLES exposed to water-soluble cholesterol (n=4)
during QS1 (17.6±0.3 mN/m) or D20 (17.7±0.2 mN/m) was not
significantly lower than the corresponding mean MSTs of 20%
Fig. 7. Surface activity of native BLES treated with “water-soluble cholesterol”. (A)
Dynamic surface tension-area isotherms of BLES exposed to 40 mg/mL “water-soluble
cholesterol” (equivalent to 1.6 mg/mL cholesterol) in the buffer. Black lines indicate the
first cycle with consecutive cycles shown in increasingly lighter shades of gray. (B)
Mean MST during CBS cycling stages (initial adsorption, IA; quasi static cycles 1 to 4,
QS1–4; and dynamic cycles 1, 2, 5, 10 and 20, D1–20) for 20% chol-BLES (n=9) and
BLES with 1.6 mg/mL water-soluble cholesterol (n=4) at t=0 h.



Fig. 8. AFM topographical images of 2500 μm2 regions of films formed from (A) native
BLES, (B) untreated 20% chol-BLES, and (C) 20% chol-BLES treated with 40 mg/mL
MβCD for 30 min. Scale bars refer to height (nm) above the supporting mica plate. BLES
films and treated chol-BLES films share a similar structure of a lipid monolayer (darkest
shade) and interspersed elevated areas consisting of stacks of lipid bilayers. Untreated
chol-BLES films lack the bilayer stacks [35].
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chol-BLES (p=0.053 and p=0.089, respectively). Therefore, water-
soluble cholesterol immediately and stably rendered BLES dysfunc-
tional, such that it was indistinguishable from 20% chol-BLES (Fig. 7).

3.6. The effect of MβCD treatment on the structure of surfactant

The structures of BLES and chol-BLES as revealed by AFM are
shown in Fig. 8A and B, respectively. Fig. 8C shows the structure of a
film of 20% chol-BLES treated with 40 mg/mL MβCD. Films of native
BLES and MβCD-treated 20% chol-BLES films both showed lamellar
structures scattered over themonolayer surface. Each step of a stack is
5 nm high, indicating a single lipid bilayer [36]. In contrast, untreated
20% chol-BLES films formed negligible lamellar structures upon
compression, in agreement with our previous observations [35]. We
showed earlier that bilayer stacks form from the monolayer upon film
compression [35]. Dispersedmultilayer patches, as well as the specific
film architecture of a monolayer, have been associated with the
unique mechanical property of functional pulmonary surfactant to
sustain a high film pressure (i.e. low surface tension) without
collapsing [36,37]. Therefore, the disrupted native structure of
surfactant in 20% chol-BLES is reversed by MβCD treatment, and
these structural observations correspond well with in vitro surfactant
function.

4. Discussion

We conclude that MβCD can extract substantial amounts of
cholesterol from interfacial surfactant films by forming water-soluble
cholesterol–cyclodextrin complexes, similar to its effect on cell
membranes [29]. In general, MβCD has been shown to efficiently
remove most of the cholesterol from other surfactant structures,
including large aggregates [28] and unilamellar vesicle bilayers [30].
For pulmonary surfactant in suspension, MβCD has been shown to
remove 80–85% of cholesterol from large aggregates [28]. Our
observation in the current study that surfactant function was restored
in a cycling-dependent manner may be an indication that MβCD is
able to solubilise cholesterol from multilayered structures formed
during compression. Since such structures were negligible in 20%
chol-BLES films, which were eventually restored by MβCD, it is likely
that MβCD removes cholesterol from both monolayer and multilayer
surfactant. Conversely, an MβCD cholesterol-complex can deliver
cholesterol to cholesterol-free surfactant films. This indicates that
cholesterol establishes equilibrium between the lipid environment of
surfactant and an aqueous “sink” of MβCD by distributing towards the
cholesterol-depleted environment.

While MβCD treatment efficiently restores both the structure and
function of surfactant films inhibited by excess cholesterol, it might on
the other hand abolish any beneficial function of physiological
cholesterol levels within surfactant. However, with respect to
minimal surface tension and low film compressibility, a beneficial
effect of cholesterol in surfactant has not been reported, except in
heterothermic mammals such as bats and dunnarts. Here, the level of
cholesterol optimises surface activity of surfactant for the highly
variable body temperature, which may reach a minimum of
approximately 15 °C [38,39,40]. With respect to the efficiency of
film formation, Bernandino de la Serna et al. [30] found that
cholesterol depleted native surfactant displayed delayed surfactant
adsorption to an elevated equilibrium value. In addition, increasing
concentrations of MβCD resulted in increasingly elevated equilibrium
adsorption surface tensions [30]. While these results indicate a
potential role for physiological amounts of cholesterol in promoting
film formation, BLES, a natural surfactant which contains a minimal
amount of cholesterol (∼1.5%) [41], exhibits rapid adsorption to a
normal equilibrium value (∼21 mN/m). In the current study the
highest concentration of MβCD (40 mg/mL) resulted in slightly
higher equilibrium surface tensions (∼25 mN/m), whereas lower
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concentrations of MβCD had no statistically significant effect on
adsorption. We found that removal of cholesterol from surfactant
films by MβCD did not affect surfactant function during subsequent
compression and expansion cycling in the CBS. This is surprising in the
light of recent [30] and earlier studies [42,43] that demonstrate
extensive effects of physiological amounts of cholesterol on surfactant
film architecture and lipid fluidity. Possibly, the treated films in the
current study still contained sufficient cholesterol to support a
physiological role.

The current study shows the pivotal role of excess cholesterol on
surfactant function. However, aside from cholesterol, unsaturated
membrane phospholipids; free fatty acids; mono-, di- and triglycer-
ides; lysophospholipids; meconium [24,41,44,45]; surfactant protein
and lipid degradation products; inflammatory agents [46–48];
reactive oxygen species [49, 50]; and plasma proteins [51–53] have
all been implicated in surfactant inhibition. It has been argued that
surfactant films can squeeze-out and thus rid themselves of
unfavourable elements upon compression [36,54–57]. This indeed
appears to be the case for surfactant exposed to plasma proteins,
where an initially impaired surfactant regained function over
subsequent compression and expansion cycles [22,58]. Though
squeeze-out appears to protect pulmonary surfactant against most
inhibitory effectors, this mechanism is ineffective for two types of
inhibition. In one, dilute surfactant does not adsorb to the air interface
in the presence of high concentrations of plasma proteins in vitro
[52,53,58]. While surfactant secreted into the alveoli is normally
highly concentrated [59], it might become sufficiently diluted by
oedema fluid in diseased lungs to allow this inhibition mechanism to
come into play [60]. In the second situation, loss of function caused by
cholesterol persists throughout cycling, irrespective of surfactant
concentration. Squeeze-out may depend on the ability of surfactant
films to undergo monolayer–bilayer transitions, which is disrupted by
excess cholesterol [35].

Our findings suggest the novel use of MβCD to clarify the role of
cholesterol-induced surfactant inhibition among the other possible
inhibitory surfactant alterations. In a recent collaboration with
Vokeroth et al. [28], applying MβCD treatment outside of a defined
surfactant system attributed a pivotal role to cholesterol in VILI. Rats
ventilated with high tidal volumes showed lower oxygenation
compared to a more gently ventilated control group. Subsequent
analysis confirmed significant impairment of surfactant within the
high-tidal volume group. Treatment with MβCD in vitro greatly
improved surfactant function [28], similar to the results of the present
study. In summary, recent and emerging studies involving treatment
of surfactant in vitro with MβCD expose elevated levels of cholesterol
as a generic surfactant inhibition mechanism.

Excess cholesterol in surfactant may be a consequence of
inflammation. In the healthy lung, both Type II pneumocytes and
macrophages rely on ATP-binding cassette transporters (ABCA1 and
ABCG1) to efflux excess intracellular cholesterol [61,62]. Expression of
ABCA1 and ABCG1 was reduced in macrophages following exposure
to endotoxin [63]. Excess intracellular cholesterol leads to apoptosis
[64] or necrosis [65] and thus cell membrane debris may be an
additional source of cholesterol in alveolar fluid [63]. In addition to
impaired reverse cholesterol transport, studies of oleic acid-induced
lung injury in rats suggest de novo cholesterol synthesis in type II
pneumocytes is increased under inflammatory conditions [66],
potentially rendering surfactant dysfunctional from the outset [67].

Treating surfactant dysfunction promises increased survival in ARDS
and the prevention or reduction of VILI. Instilling exogenous surfactant
has been tested as a treatment for ARDS, but did not consistently
decrease morbidity and mortality [20,68] (with the exception of
paediatric ARDS [69]). The current study shows that chol-BLES and
BLES adsorb equally well to the interface. As a consequence, exogenous
surfactant may not preferentially adsorb to the air-lung interface to
replace dysfunctional endogenous surfactant, potentially explaining the
lack of success with surfactant replacement therapy. Moreover,
exogenous surfactant may rapidly become impaired by a substantial
excess of cholesterol present in the diseased lung. In addition to or in
place of removing excess cholesterol from the lung, reducing the
production of excessive levels of cholesterol may be required to
successfully counteract surfactant inhibition due to cholesterol.

The demonstrated efficacy of MβCD in restoring surfactant
function, combined with the low overall toxicity of MβCD [70–72]
and the capability to deliver cyclodextrins either as aerosols [73–75]
or along with exogenous surfactant, makes this substance an
attractive candidate for the treatment of surfactant dysfunction.
When various β-cyclodextrins (βCDs) were instilled into the lungs of
rabbits via an intratracheal bolus, dimethyl-βCD (DM-βCD) was
efficiently cleared at a rate approximately equal to the glomerular
filtration rate, indicating the absence of major pulmonary barriers to
cyclodextrin absorption [76]. Methylated βCDs may further enhance
transcellular pulmonary epithelial permeability by loosening apical
tight junctions associated with lipid rafts [77]. Likely, cyclodextrin–
cholesterol complexes would be cleared from the lung separately; the
cyclodextrins via a paracellular route through the pulmonary
epithelium and the hydrophobic sterol transcellularly [78,79]. We
are currently exploring the effectiveness and initial safety of
pulmonary MβCD delivery in an animal model of ALI/ARDS.

5. Conclusions

Upon treatment with MβCD, pulmonary surfactant rendered
dysfunctional by an excess level of cholesterol rapidly regains the
ability to consistently reach near-zero surface tensions in a cycling-
dependent manner. By demonstrating that the native structure and
function of cholesterol-inhibited surfactant can be fully restored by
MβCD, the current study introduces a new method for evaluating the
role of cholesterol in surfactant dysfunction. Applied parallel studies
by us and our collaborators validate this approach in VILI by
demonstrating an important role for cholesterol in surfactant
dysfunction. We propose further investigation into MβCD treatment
of surfactant dysfunction in such patients.
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