150 research outputs found

    Collapse of a protector species drives secondary endangerment in waterbird communities

    Get PDF
    Interactions and dependence between species can transmit the effects of species declines within and between trophic levels, resulting in secondary endangerments and, in some cases, extinctions. Many mixed-species avian breeding aggregations commonly have a protector species whose aggressive nest defense is used by other species to defend their nests. Disappearance of the protector species may have population demographic consequences on the dependent species. Aggressive nest defense behavior of small colonial gulls, such as the black-headed gull (Chroicocephalus ridibundus), is used by many waterbird species to gain protection against predators. We used data from 15 local waterbird communities in Finland to study long-term changes and dynamics of breeding numbers of other waterbirds as a response to long-term changes and dynamics of black-headed gull colonies. We found that breeding numbers of many species tracked long-term changes in the size of black-headed gull colonies. This was true even after controlling for a common trend in the size of the black-headed gull colony and the breeding numbers of the other species. The trend-controlled positive temporal association with black-headed gull was relatively stronger in species that nest in similar habitats of a lake as the black-headed gull, and in species that have a more critical conservation status due to drastic population decline. Our results suggest that the overall decline of black-headed gull colonies has resulted in secondary endangerment of many other species in waterbird communities.Peer reviewe

    Geographic Distribution of Soybean Aphid Biotypes in the United States and Canada during 2008–2010

    Get PDF
    Soybean aphid (Aphis glycines Matsumura) is a native pest of soybean [Glycine max (L.) Merr.] in eastern Asia and was detected on soybeans in North America in 2000. In 2004, the soybean cultivar Dowling was described to be resistant to soybean aphids with the Rag1 gene for resistance. In 2006, a virulent biotype of soybean aphid in Ohio was reported to proliferate on soybeans with the Rag1 gene. The objective was to survey the occurrence of virulent aphid populations on soybean indicator lines across geographies and years. Nine soybean lines were identified on the basis of their degree of aphid resistance and their importance in breeding programs. Naturally occurring soybean aphid populations were collected in 10 states (Kansas, Illinois, Indiana, Iowa, Michigan, Minnesota, North Dakota, Ohio, South Dakota, and Wisconsin) and the Canadian province of Ontario. The reproductive capacity of field-collected soybean aphid populations was tested on soybean lines; growth rates were compared in no-choice field cages at each geographic region across 3 yr. The occurrence of soybean aphid biotypes was highly variable from year to year and across environments. The frequency of Biotypes 2, 3, and 4 was 54, 18, and 7%, respectively, from the 28 soybean aphid populations collected across 3 yr and 11 environments. Plant introduction (PI) 567598B, a natural gene pyramid of rag1c and rag4, had lowest frequency of soybean aphid colonization (18%). Several factors may have contributed to the variability, including genetic diversity of soybean aphids, parthenogenicity, abundance of the overwintering host buckthorn (Rhamnus spp.), and migratory patterns of soybean aphids across the landscape

    Sustainable management of migratory European ducks: finding model species

    Get PDF
    Eurasian migratory duck species represent a natural resource shared between European countries. As is evident throughout human harvest history, lack of coordinated management and monitoring at appropriate levels often leads to 'the tragedy of the commons', where shared populations suffer overexploitation. Effective management can also be hampered by poor understanding of the factors that limit and regulate migratory populations throughout their flyways, and over time. Following decades of population increase, some European duck populations now show signs of levelling off or even decline, underlining the need for more active and effective management. In Europe, the existing mechanisms for delivering effective management of duck populations are limited, despite the need and enthusiasm for establishing adaptive management (AM) schemes for wildlife populations. Existing international legal agreements already oblige European countries to sustainably manage migratory waterbirds. Although the lack of coordinated demographic and hunting data remains a challenge to sustainable management planning, AM provides a robust decision-making framework even in the presence of uncertainty regarding demographic and other information. In this paper we investigate the research and monitoring needs in Europe to successfully apply AM to ducks, and search for possible model species, focusing on freshwater species (in contrast to sea duck species) in the East Atlantic flyway. Based on current knowledge, we suggest that common teal Anas crecca, Eurasian wigeon Mareca penelope and common goldeneye Bucephala clangula represent the best species for testing the application of an AM muddling approach to duck populations in Europe. Applying AM to huntable species with relatively good population data as models for broader implementation represents a cost effective way of starting to develop AM on a European flyway scale for ducks, and potentially other waterbirds in the future

    Selected Soybean Plant Introductions with Partial Resistance to \u3ci\u3eSclerotinia sclerotiorum\u3c/i\u3e

    Get PDF
    Sclerotinia stem rot, caused by Sclerotinia sclerotiorum, is a major soybean (Glycine max) disease in north-central regions of the United States and throughout the world. Current sources of resistance to Sclerotinia stem rot express partial resistance, and are limited in number within soybean germ plasm. A total of 6,520 maturity group (MG) 0 to IV plant introductions (PIs) were evaluated for Sclerotinia stem rot resistance in the United States and Canada in small plots or in the greenhouse from 1995 to 1997. Selected PIs with the most resistance were evaluated for resistance in the United States and Canada in replicated large plots from 1998 to 2000. The PIs in the MG I to III tests in Urbana, IL were evaluated for agronomic traits from 1998 to 2000. The selected PIs also were evaluated with an excised leaf inoculation and petiole inoculation technique. After the 1995 to 1997 evaluations, all but 68 PIs were eliminated because of their susceptibility to Sclerotinia stem rot. In field tests in Urbana, higher disease severity in selected MG I to III PIs was significantly (P \u3c 0.05) associated with taller plant heights and greater canopy closure. All other agronomic traits evaluated were not associated or were inconsistently associated with disease severity. MG I to III PIs 153.282, 189.931, 196.157, 398.637, 417.201, 423.818, and 561.331 had high levels of resistance and had canopies similar to the resistant checks. The resistance ratings from the petiole inoculation technique had a high and significant (P \u3c 0.01) correlation with disease severity in the MG I and II field tests. The partially resistant PIs identified in this study can be valuable in incorporating Sclerotinia stem rot resistance into elite germ plasm

    Simultaneous Mutations in Multi-Viral Proteins Are Required for Soybean mosaic virus to Gain Virulence on Soybean Genotypes Carrying Different R Genes

    Get PDF
    BACKGROUND: Genetic resistance is the most effective and sustainable approach to the control of plant pathogens that are a major constraint to agriculture worldwide. In soybean, three dominant R genes, i.e., Rsv1, Rsv3 and Rsv4, have been identified and deployed against Soybean mosaic virus (SMV) with strain-specificities. Molecular identification of virulent determinants of SMV on these resistance genes will provide essential information for the proper utilization of these resistance genes to protect soybean against SMV, and advance knowledge of virus-host interactions in general. METHODOLOGY/PRINCIPAL FINDINGS: To study the gain and loss of SMV virulence on all the three resistance loci, SMV strains G7 and two G2 isolates L and LRB were used as parental viruses. SMV chimeras and mutants were created by partial genome swapping and point mutagenesis and then assessed for virulence on soybean cultivars PI96983 (Rsv1), L-29 (Rsv3), V94-5152 (Rsv4) and Williams 82 (rsv). It was found that P3 played an essential role in virulence determination on all three resistance loci and CI was required for virulence on Rsv1- and Rsv3-genotype soybeans. In addition, essential mutations in HC-Pro were also required for the gain of virulence on Rsv1-genotype soybean. To our best knowledge, this is the first report that CI and P3 are involved in virulence on Rsv1- and Rsv3-mediated resistance, respectively. CONCLUSIONS/SIGNIFICANCE: Multiple viral proteins, i.e., HC-Pro, P3 and CI, are involved in virulence on the three resistance loci and simultaneous mutations at essential positions of different viral proteins are required for an avirulent SMV strain to gain virulence on all three resistance loci. The likelihood of such mutations occurring naturally and concurrently on multiple viral proteins is low. Thus, incorporation of all three resistance genes in a soybean cultivar through gene pyramiding may provide durable resistance to SMV

    Prevention of food and airway allergy: consensus of the Italian Society of Preventive and Social Paediatrics, the Italian Society of Paediatric Allergy and Immunology, and Italian Society of Pediatrics

    Get PDF

    Reply

    No full text
    • …
    corecore