51 research outputs found

    On deformation of electron holes in phase space

    Full text link
    This Letter shows that for particularly shaped background particle distributions momentum exchange between phase space holes and the distribution causes acceleration of the holes along the magnetic field. In the particular case of a non-symmetric ring distribution (ring with loss cone) this acceleration is nonuniform in phase space being weaker at larger perpendicular velocities thus causing deformation of the hole in phase space.Comment: Original MS in EPL style, 1 Figur

    Demeter high resolution observations of the ionospheric thermal plasma response to magnetospheric energy input during the magnetic storm of November 2004

    Get PDF
    High resolution Demeter plasma and wave observations were available during one of the geomagnetic storms of November 2004 when the ionospheric footprint of the plasmasphere was pushed below 64 degrees in the midnight sector. We report here onboard observations of thermal/suprathermal plasma and HF electric field variations with a temporal resolution of 0.4 s, which corresponds to a spatial resolution of 3 km. Local perturbations of the plasma parameters at the altitude of 730 km are analysed with respect to the variation of the field-aligned currents, electron and proton precipitation and large-scale electric fields, measured in-situ by Demeter and by remote optical methods from the IMAGE/Polar satellites. <br><br> Flow monitoring in the 21:00 and 24:00 MLT sectors during storm conditions reveals two distinct regions of O<sup>+</sup> outflow, i.e. the region of the field-aligned currents, which often comprises few layers of opposite currents, and the region of velocity reversal toward dusk at sub-auroral latitudes. Average upward O<sup>+</sup> velocities are identical in both local time sectors and vary between 200 and 450 m s<sup>−1</sup>, with an exception of a few cases of higher speed (~1000 m s<sup>−1</sup>) outflow, observed in the midnight sector. Each individual outflow event does not indicate any heating process of the thermal O<sup>+</sup> population. On the contrary, the temperature of the O<sup>+</sup>, outflowing from auroral latitudes, is found to be even colder than that of the ambient ion plasma. The only ion population which is observed to be involved in the heating is the O<sup>+</sup> with energies a few times higher than the thermal energy. Such a population was detected at sub-auroral latitudes in the region of duskward flow reversal. Its temperature raises up to a few eV inside the layer of sheared velocity. <br><br> A deep decrease in the H<sup>+</sup> density at heights and latitudes, where, according to the IRI model, these ions are expected to comprise ~50% of the positive charge, indicates that the thermospheric balance between atomic oxygen and hydrogen was re-established in favour of oxygen. As a consequence, the charge exchange between oxygen and hydrogen does not effectively limit the O<sup>+</sup> production in the regions of the electron precipitation. According to Demeter observations, the O<sup>+</sup> concentration is doubled inside the layers with upward currents (downward electrons). Such a density excess creates the pressure gradient which drives the plasma away from the overdense regions, i.e. first, from the layers of precipitating electrons and then upward along the layers of downward current. <br><br> In addition, the downward currents are identified to be the source regions of hiss emissions, i.e. electron acoustic mode excited via the Landau resonance in the multi-component electron plasma. Such instabilities, which are often observed in the auroral region at 2–5 Earth radii, but rarely at ionospheric altitudes, are believed to be generated by an electron beam which moves through the background plasma with a velocity higher than its thermal velocity

    Radiation in the neighbourhood of a double layer

    Get PDF

    Dependence of CMI Growth Rates on Electron Velocity Distributions and Perturbation by Solitary Waves

    Full text link
    We calculate growth rates and corresponding gains for RX and LO mode radiation associated with the cyclotron maser instability for parameterized horseshoe electron velocity distributions. The velocity distribution function was modeled to closely fit the electron distribution functions observed in the auroral cavity. We systematically varied the model parameters as well as the propagation direction to study the dependence of growth rates on model parameters. The growth rate depends strongly on loss cone opening angle, which must be less than 90o90^{o} for significant CMI growth. The growth rate is sharply peaked for perpendicular radiation (k∥=0k_{\parallel} = 0), with a full-width at half-maximum 1.7o1.7^{o}, in good agreement with observed k-vector orientations and numerical simulations. The fractional bandwidth varied between 10−4^{-4} and 10−2^{-2}, depending most strongly on propagation direction. This range encompasses nearly all observed fractional AKR burst bandwidths. We find excellent agreement between the computed RX mode emergent intensities and observed AKR intensities assuming convective growth length Lc≈L_c\approx20-40 km and group speed 0.15cc. The only computed LO mode growth rates compatible observed LO mode radiation levels occurred for number densities more than 100 times the average energetic electron densities measured in auroral cavities. This implies that LO mode radiation is not produced directly by the CMI mechanism but more likely results from mode conversion of RX mode radiation. We find that perturbation of the model velocity distribution by large ion solitary waves (ion holes) can enhance the growth rate by a factor of 2-4. This will result in a gain enhancement more than 40 dB depending on the convective growth length within the structure. Similar enhancements may be caused by EMIC waves.Comment: 21 pages, 11 figures. J. Geophys. Res. 2007 (accepted

    Cluster Multi-spacecraft Determination of AKR Angular Beaming

    Full text link
    Simultaneous observations of AKR emission using the four-spacecraft Cluster array were used to make the first direct measurements of the angular beaming patterns of individual bursts. By comparing the spacecraft locations and AKR burst locations, the angular beaming pattern was found to be narrowly confined to a plane containing the magnetic field vector at the source and tangent to a circle of constant latitude. Most rays paths are confined within 15 deg of this tangent plane, consistent with numerical simulations of AKR k-vector orientation at maximum growth rate. The emission is also strongly directed upward in the tangent plane, which we interpret as refraction of the rays as they leave the auroral cavity. The narrow beaming pattern implies that an observer located above the polar cap can detect AKR emission only from a small fraction of the auroral oval at a given location. This has important consequences for interpreting AKR visibility at a given location. It also helps re-interpret previously published Cluster VLBI studies of AKR source locations, which are now seen to be only a subset of all possible source locations. These observations are inconsistent with either filled or hollow cone beaming models.Comment: 5 pages, 4 figures. Geophys. Res. Letters (accepted

    Striated AKR Emission: A Remote Tracer of Ion Solitary Structures

    Full text link
    We describe the statistical properties of narrowband drifting auroral kilometric radiation ('striated' AKR) based on observations from the Cluster wideband receiver during 2002-2005. We show that the observed characteristics, including frequency drift rate and direction, narrow bandwidth, observed intensity, and beaming angular sizes are all consistent with triggering by upward traveling ion solitary structures (`ion holes'). We calculate the expected perturbation of a horseshoe electron distribution function by an ion hole by integrating the resonance condition for a cyclotron maser instability (CMI) using the perturbed velocity distribution. We find that the CMI growth rate can be strongly enhanced as the horseshoe velocity distribution contracts inside the passing ion hole, resulting in a power gain increase greater than 100 dB. The gain curve is sharply peaked just above the R-mode cut-off frequency, with an effective bandwidth ~50 Hz, consistent with the observed bandwidth of striated AKR emission. Ion holes are observed in situ in the acceleration region moving upward with spatial scales and speeds consistent with the observed bandwidth and slopes of SAKR bursts. Hence, we suggest that SAKR bursts are a remote sensor of ion holes and can be used to determine the frequency of occurrence, locations in the acceleration region, and lifetimes of these structures.Comment: 10 pages, 10 figures. J .Geophys. Res. (in press

    Nonlinear ion-acoustic (IA) waves driven in a cylindrically symmetric flow

    Full text link
    By employing a self-similar, two-fluid MHD model in a cylindrical geometry, we study the features of nonlinear ion-acoustic (IA) waves which propagate in the direction of external magnetic field lines in space plasmas. Numerical calculations not only expose the well-known three shapes of nonlinear structures (sinusoidal, sawtooth, and spiky or bipolar) which are observed by numerous satellites and simulated by models in a Cartesian geometry, but also illustrate new results, such as, two reversely propagating nonlinear waves, density dips and humps, diverging and converging electric shocks, etc. A case study on Cluster satellite data is also introduced.Comment: accepted by AS
    • …
    corecore