143 research outputs found

    Exposure to rosiglitazone, a PPAR-gamma agonist, in late gestation reduces the abundance of factors regulating cardiac metabolism and cardiomyocyte size in the sheep fetus

    Get PDF
    It is unknown whether cardiomyocyte hypertrophy and the transition to fatty acid oxidation as the main source of energy after birth is dependent on the maturation of the cardiomyocytes' metabolic system, or on the limitation of substrate availability before birth. This study aimed to investigate whether intrafetal administration of a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist, rosiglitazone, during late gestation can stimulate the expression of factors regulating cardiac growth and metabolism in preparation for birth, and the consequences of cardiac contractility in the fetal sheep at ∼140 days gestation. The mRNA expression and protein abundance of key factors regulating growth and metabolism were quantified using quantitative RT-PCR and Western blot analysis, respectively. Cardiac contractility was determined by measuring the Ca(2+) sensitivity and maximum Ca(2+)-activated force of skinned cardiomyocyte bundles. Rosiglitazone-treated fetuses had a lower cardiac abundance of insulin-signaling molecules, including insulin receptor-β, insulin receptor substrate-1 (IRS-1), phospho-IRS-1 (Tyr-895), phosphatidylinositol 3-kinase (PI3K) regulatory subunit p85, PI3K catalytic subunit p110α, phospho-3-phosphoinositide-dependent protein kinase 1 (Ser-241), protein kinase B (Akt-1), phospho-Akt (Ser-273), PKCζ, phospho-PKCζ(Thr-410), Akt substrate 160 kDa (AS160), phospho-AS160 (Thr-642), and glucose transporter type-4. Additionally, cardiac abundance of regulators of fatty acid β-oxidation, including adiponectin receptor 1, AMPKα, phospho-AMPKα (Thr-172), phospho-acetyl CoA carboxylase (Ser-79), carnitine palmitoyltransferase-1, and PGC-1α was lower in the rosiglitazone-treated group. Rosiglitazone administration also resulted in a decrease in cardiomyocyte size. Rosiglitazone administration in the late-gestation sheep fetus resulted in a decreased abundance of factors regulating cardiac glucose uptake, fatty acid β-oxidation, and cardiomyocyte size. These findings suggest that activation of PPAR-γ using rosiglitazone does not promote the maturation of cardiomyocytes; rather, it may decrease cardiac metabolism and compromise cardiac health later in life.Shervi Lie, Melisa Hui, I. Caroline McMillen, Beverly S. Muhlhausler, Giuseppe S. Posterino, Stacey L. Dunn, Kimberley C. Wang, Kimberley J. Botting, Janna L. Morriso

    Acute Alitasic Cholecystitis

    Get PDF
    Acute acalculous cholecystitis (AAC) is the inflammatory disease of the gallbladder in the absence of gallstones. Typically affects critically ill patients. Diagnosis is not straightforward as Murphy’s sign is difficult to detect in critically ill and many imaging findings are numb or nonspecific. Acalculous cholecystitis is a life-threatening disorder that has a high risk of perforation and necrosis compared to the more typical calculous disease. Management involves a percutaneous cholecystostomy, a surgical cholecystectomy, or, more recently, a metal stent placed endoscopically through the gastrointestinal tract into the gallbladder. Acalculous cholecystitis is a serious illness that has high morbidity and mortality. The reported mortality of the condition varies from 30 to 50% depending on the age of the patient. Even those who survive have a long recovery that can take months

    Human skeletal muscle plasmalemma alters its structure to change its Ca2+-handling following heavy-load resistance exercise

    Get PDF
    High-force eccentric exercise results in sustained increases in cytoplasmic Ca2+ levels ([Ca2+]cyto), which can cause damage to the muscle. Here we report that a heavy-load strength training bout greatly alters the structure of the membrane network inside the fibres, the tubular (t-) system, causing the loss of its predominantly transverse organization and an increase in vacuolation of its longitudinal tubules across adjacent sarcomeres. The transverse tubules and vacuoles displayed distinct Ca2+-handling properties. Both t-system components could take up Ca2+ from the cytoplasm but only transverse tubules supported store-operated Ca2+ entry. The retention of significant amounts of Ca2+ within vacuoles provides an effective mechanism to reduce the total content of Ca2+ within the fibre cytoplasm. We propose this ability can reduce or limit resistance exercise-induced, Ca2+-dependent damage to the fibre by the reduction of [Ca2+]cyto to help maintain fibre viability during the period associated with delayed onset muscle soreness

    Three-dimensional reconstruction and analysis of the tubular system of vertebrate skeletal muscle

    Get PDF
    Skeletal muscle fibres are very large and elongated. In response to excitation there must be a rapid and uniform release of Ca+ throughout for contraction. To ensure a uniform spread of excitation throughout the fibre to all the Ca+ release sites, the muscle internalizes the plasma membrane, to form the tubular (t-) system. Hence the t-system forms a complex and dense network throughout the fibre that is responsible for excitation-contraction coupling and other signalling mechanisms. However, we currently do not have a very detailed view of this membrane network because of limitations in previously used imaging techniques to visualize it. In this study we serially imaged fluorescent dye trapped in the t-system of fibres from rat and toad muscle using the confocal microscope, and deconvolved and reconstructed these images to produce the first three-dimensional reconstructions of large volumes of the vertebrate tsystem. These images showed complex arrangements of tubules that have not been described previously and also allowed the association of the t-system with cellular organelles to be visualized. There was a high density of tubules close to the nuclear envelope because of the close and parallel alignment of the long axes of the myofibrils and the nuclei. Furthermore local fluorescence intensity variations from sub-resolution tubules were converted to tubule diameters. Mean diameters of tubules were 85.9±66.6 and 91.2±8.2 nm, from rat and toad muscle under isotonic conditions, respectively. Under osmotic stress the distribution of tubular diameters shifted significantly in toad muscle only, with change specifically occurring in the transverse but not longitudinal tubules

    Relationships between resting conductances, excitability, and t-system ionic homeostasis in skeletal muscle.

    Get PDF
    Activation of skeletal muscle fibers requires rapid sarcolemmal action potential (AP) conduction to ensure uniform excitation along the fiber length, as well as successful tubular excitation to initiate excitation-contraction coupling. In our companion paper in this issue, Pedersen et al. (2011. J. Gen. Physiol. doi:10.1085/jgp.201010510) quantify, for subthreshold stimuli, the influence upon both surface conduction velocity and tubular (t)-system excitation of the large changes in resting membrane conductance (G(M)) that occur during repetitive AP firing. The present work extends the analysis by developing a multi-compartment modification of the charge-difference model of Fraser and Huang to provide a quantitative description of the conduction velocity of actively propagated APs; the influence of voltage-gated ion channels within the t-system; the influence of t-system APs on ionic homeostasis within the t-system; the influence of t-system ion concentration changes on membrane potentials; and the influence of Phase I and Phase II G(M) changes on these relationships. Passive conduction properties of the novel model agreed with established linear circuit analysis and previous experimental results, while key simulations of AP firing were tested against focused experimental microelectrode measurements of membrane potential. This study thereby first quantified the effects of the t-system luminal resistance and voltage-gated Na(+) channel density on surface AP propagation and the resultant electrical response of the t-system. Second, it demonstrated the influence of G(M) changes during repetitive AP firing upon surface and t-system excitability. Third, it showed that significant K(+) accumulation occurs within the t-system during repetitive AP firing and produces a baseline depolarization of the surface membrane potential. Finally, it indicated that G(M) changes during repetitive AP firing significantly influence both t-system K(+) accumulation and its influence on the resting membrane potential. Thus, the present study emerges with a quantitative description of the changes in membrane potential, excitability, and t-system ionic homeostasis that occur during repetitive AP firing in skeletal muscle

    A Mechanism for Statin-Induced Susceptibility to Myopathy

    Get PDF
    This study aimed to identify a mechanism for statin-induced myopathy that explains its prevalence and selectivity for skeletal muscle, and to understand its interaction with moderate exercise. Statin-associated adverse muscle symptoms reduce adherence to statin therapy; this limits the effectiveness of statins in reducing cardiovascular risk. The issue is further compounded by perceived interactions between statin treatment and exercise. This study examined muscles from individuals taking statins and rats treated with statins for 4 weeks. In skeletal muscle, statin treatment caused dissociation of the stabilizing protein FK506 binding protein (FKBP12) from the sarcoplasmic reticulum (SR) calcium (Ca2+) release channel, the ryanodine receptor 1, which was associated with pro-apoptotic signaling and reactive nitrogen species/reactive oxygen species (RNS/ROS)−dependent spontaneous SR Ca2+ release events (Ca2+ sparks). Statin treatment had no effect on Ca2+ spark frequency in cardiac myocytes. Despite potentially deleterious effects of statins on skeletal muscle, there was no impact on force production or SR Ca2+ release in electrically stimulated muscle fibers. Statin-treated rats with access to a running wheel ran further than control rats; this exercise normalized FKBP12 binding to ryanodine receptor 1, preventing the increase in Ca2+ sparks and pro-apoptotic signaling. Statin-mediated RNS/ROS−dependent destabilization of SR Ca2+ handling has the potential to initiate skeletal (but not cardiac) myopathy in susceptible individuals. Importantly, although exercise increases RNS/ROS, it did not trigger deleterious statin effects on skeletal muscle. Indeed, our results indicate that moderate exercise might benefit individuals who take statins

    The effect of intrauterine growth restriction on Ca2+ -activated force and contractile protein expression in the mesenteric artery of adult (6-month-old) male and female Wistar-Kyoto rats.

    Get PDF
    Intrauterine growth restriction (IUGR) is known to alter vascular smooth muscle reactivity, but it is currently unknown whether these changes are driven by downstream events that lead to force development, specifically, Ca2+ -regulated activation of the contractile apparatus or a shift in contractile protein content. This study investigated the effects of IUGR on Ca2+ -activated force production, contractile protein expression, and a potential phenotypic switch in the resistance mesenteric artery of both male and female Wistar-Kyoto (WKY) rats following two different growth restriction models. Pregnant female WKY rats were randomly assigned to either a control (C; N = 9) or food restriction diet (FR; 40% of control; N = 11) at gestational day-15 or underwent a bilateral uterine vessel ligation surgery restriction (SR; N = 10) or a sham surgery control model (SC; N = 12) on day-18 of gestation. At 6-months of age, vascular responsiveness of intact mesenteric arteries was studied, before chemically permeabilization using 50 μmol/L β-escin to investigate Ca2+ -activated force. Peak responsiveness to a K+ -induced depolarization was decreased (P ≤ 0.05) due to a reduction in maximum Ca2+ -activated force (P ≤ 0.05) in both male growth restricted experimental groups. Vascular responsiveness was unchanged between female experimental groups. Segments of mesenteric artery were analyzed using Western blotting revealed IUGR reduced the relative abundance of important receptor and contractile proteins in male growth restricted rats (P ≤ 0.05), suggesting a potential phenotypic switch, whilst no changes were observed in females. Results from this study suggest that IUGR alters the mesenteric artery reactivity due to a decrease in maximum Ca2+ -activated force, and likely contributed to by a reduction in contractile protein and receptor/channel content in 6-month-old male rats, while female WKY rats appear to be protected

    'Current' advances in mechanically skinned skeletal muscle fibres

    No full text
    1. In skeletal muscle, excitation–contraction (E-C) coupling describes a cascade of cellular events initiated by an action potential (AP) at the surface membrane that ultimately results in muscle contraction. Being able to specifically manipulate the many processes that constitute E-C coupling, as well as the many factors that modulate these processes, has proven challenging. 2. One of the simplest methods of gaining access to the intracellular environment of the muscle fibre is to physically remove (mechanically skin) the surface membrane. In doing so, the myoplasmic environment is opened to external manipulation. 3. Surprisingly, even though the surface membrane is absent, it is still possible to activate both twitch and tetanic force responses in a mechanically skinned muscle fibre by generating an AP in the transverse tubular system. This proves that all the key steps in E-C coupling are retained in this preparation. 4. By using this technique, it is now possible to easily manipulate the myoplasmic environment and observe how altering individual factors affects the normal E-C coupling sequence. The effect of important factors, such as the redox state of the cell, parvalbumin and the sarcoplasmic reticulum Ca2+-ATPase, on twitch and tetanic force can now be specifically investigated independent of other factors.Giuseppe S Posterin

    Effect of sarcoplasmic reticulum Ca2+ content on action potential-induced Ca2+ release in rat skeletal muscle fibres

    No full text
    The definitive version is available at www.blackwell-synergy.comThis study examined the relationship between the level of Ca2+ loading in the sarcoplasmic reticulum (SR) and the amount of Ca2+ released by an action potential (AP) in fast-twitch skeletal muscle fibres of the rat. Single muscle fibres were mechanically skinned and electric field stimulation was used to induce an AP in the transverse-tubular system and a resulting twitch response. Responses were elicited in the presence of known amounts (0–0.38 mM) of BAPTA, a fast Ca2+ buffer, with the SR Ca2+ pump either functional or blocked by 50 μM 2,5-di-tert-butyl-1,4-hydroquinone (TBQ). When Ca2+ reuptake was blocked, an estimate of the amount of Ca2+ released by an AP could be derived from the size of the force response. In a fibre with the SR loaded with Ca2+ at the endogenous level (≈1.2 mM, expressed as total Ca2+ per litre fibre volume; approximately one-third of maximal loading), a single AP triggered the release of ≈230 μM Ca2+. If a second AP was elicited 10 ms after the first, only a further ≈60 μM Ca2+ was released, the reduction probably being due to Ca2+ inactivation of Ca2+ release. When Ca2+ reuptake was blocked, APs applied 15 s apart elicited similar amounts of Ca2+ release (≈230 μM) on the first two or three occasions and then progressively less Ca2+ was released until the SR was fully depleted after a total of approximately eight APs. When the SR was loaded to near-maximal capacity (≈3–4 mM), each AP (or pair of APs 10 ms apart) still only released approximately the same amount of Ca2+ as that released when the fibre was endogenously loaded. Consistent with this, successive APs (15 s apart) elicited similar amounts of Ca2+ release ≈10–16 times before the amount released declined, and the SR was fully depleted of Ca2+ after a total release calculated to be ≈3–4 mM. When the SR was loaded maximally, increasing the [BAPTA] above 280 μM resulted in an increase in the amount of Ca2+ released per AP, probably because the greater level of cytoplasmic Ca2+ buffering prevented Ca2+ inactivation from adequately limiting Ca2+ release. These results show that the amount of Ca2+ released by AP stimulation in rat fast-twitch fibres normally stays virtually constant over a wide range of SR Ca2+ content, in spite of the likely large change in the electrochemical gradient for Ca2+. This was also found to be the case in toad twitch fibres. This constancy in Ca2+ release should help ensure precise regulation of force production in fast-twitch muscle in a range of circumstances
    corecore