46 research outputs found

    A unifying conceptual model for the environmental responses of isoprene emissions from plants

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.BACKGROUND AND AIMS: Isoprene is the most important volatile organic compound emitted by land plants in terms of abundance and environmental effects. Controls on isoprene emission rates include light, temperature, water supply and CO2 concentration. A need to quantify these controls has long been recognized. There are already models that give realistic results, but they are complex, highly empirical and require separate responses to different drivers. This study sets out to find a simpler, unifying principle. METHODS: A simple model is presented based on the idea of balancing demands for reducing power (derived from photosynthetic electron transport) in primary metabolism versus the secondary pathway that leads to the synthesis of isoprene. This model's ability to account for key features in a variety of experimental data sets is assessed. KEY RESULTS: The model simultaneously predicts the fundamental responses observed in short-term experiments, namely: (1) the decoupling between carbon assimilation and isoprene emission; (2) a continued increase in isoprene emission with photosynthetically active radiation (PAR) at high PAR, after carbon assimilation has saturated; (3) a maximum of isoprene emission at low internal CO2 concentration (ci) and an asymptotic decline thereafter with increasing ci; (4) maintenance of high isoprene emissions when carbon assimilation is restricted by drought; and (5) a temperature optimum higher than that of photosynthesis, but lower than that of isoprene synthase activity. CONCLUSIONS: A simple model was used to test the hypothesis that reducing power available to the synthesis pathway for isoprene varies according to the extent to which the needs of carbon assimilation are satisfied. Despite its simplicity the model explains much in terms of the observed response of isoprene to external drivers as well as the observed decoupling between carbon assimilation and isoprene emission. The concept has the potential to improve global-scale modelling of vegetation isoprene emission.We thank Karena McKinney for providing the original isoprene data for the Harvard forest site. We thank Russell Monson and RuĀØdiger Grote for their helpful and constructive comments on the manuscript. C.M. and I.C.P. have received funding from the European Communityā€™s Seventh Framework Programme (FP7 2007 ā€“ 2013) under grant agreement no. 238366

    Temperature response measurements from eucalypts give insight into the impact of Australian isoprene emissions on air quality in 2050

    Get PDF
    Predicting future air quality in Australian cities dominated by eucalypt emissions requires an understanding of their emission potentials in a warmer climate. Here we measure the temperature response in isoprene emissions from saplings of four different Eucalyptus species grown under current and future average summertime temperature conditions. The future conditions represent a 2050 climate under Representative Concentration Pathway 8.5, with average daytime temperatures of 294.5ā€‰K. Ramping the temperature from 293 to 328ā€‰K resulted in these eucalypts emitting isoprene at temperatures 4ā€“9ā€‰K higher than the default maximum emission temperature in the Model of Emissions of Gases and Aerosols from Nature (MEGAN). New basal emission rate measurements were obtained at the standard conditions of 303ā€‰K leaf temperature and 1000ā€‰Āµmolā€‰māˆ’2ā€‰sāˆ’1 photosynthetically active radiation and converted into landscape emission factors. We applied the eucalypt temperature responses and emission factors to Australian trees within MEGAN and ran the CSIRO Chemical Transport Model for three summertime campaigns in Australia. Compared to the default model, the new temperature responses resulted in less isoprene emission in the morning and more during hot afternoons, improving the statistical fit of modelled to observed ambient isoprene. Compared to current conditions, an additional 2ā€‰ppb of isoprene is predicted in 2050, causing hourly increases up to 21ā€‰ppb of ozone and 24-hourly increases of 0.4ā€‰Āµgā€‰māˆ’3 of aerosol in Sydney. A 550ā€‰ppmā€‰CO2 atmosphere in 2050 mitigates these peak Sydney ozone mixing ratios by 4ā€‰ppb. Nevertheless, these forecasted increases in ozone are up to one-fifth of the hourly Australian air quality limit, suggesting that anthropogenic NOx should be further reduced to maintain healthy air quality in future

    The Volatilomes of Symbiodiniaceae-Associated Bacteria Are Influenced by Chemicals Derived From Their Algal Partner

    Full text link
    Ā© Copyright Ā© 2020 Lawson, Seymour, Possell, Suggett and Raina. Biogenic volatile organic compounds (BVOCs) are a large group of molecules involved in trophic interactions, stress response and atmospheric chemistry. Although they have been extensively studied in terrestrial ecosystems, their identity and prevalence in the marine environment remains largely unexplored. Here we characterized the volatilome of two abundant marine bacteria that were previously identified as members of the core microbiome of Symbiodiniaceae (phylum: Dinoflagellata), the photosynthetic endosymbionts of reef building corals. To determine the influence of Symbiodiniaceae exudate on their associated bacteria, we incubated isolates of Marinobacter adhaerens HP15 and Labrenzia sp. 21p with Symbiodiniaceae culture filtrate or culture medium (control) and investigated their volatilomes using GCā€“MS. The volatilome of Labrenzia sp. incubated in Symbiodiniaceae filtrate was significantly different and more diverse relative to the control. In contrast, the overall composition of the M. adhaerens volatilomes were consistent between treatment and control. Among the 35 compounds detected in both bacterial species, the dominant chemical functional groups were halogenated hydrocarbons, aromatic hydrocarbons and organosulfurs, some of which are known to play roles in inter-organism signaling, to act as antioxidants and as antimicrobials. This study provides new insights into the potential sources and diversity of marine BVOCs, uncovering a wide range of molecules that may play important physiological and ecological roles for these organisms, while also revealing the role of Symbiodiniaceae-associated bacteria in the emission of important atmospheric gases

    Understanding the glacial methane cycle.

    Get PDF
    Atmospheric methane (CH4) varied with climate during the Quaternary, rising from a concentration of 375ā€‰p.p.b.v. during the last glacial maximum (LGM) 21,000 years ago, to 680ā€‰p.p.b.v. at the beginning of the industrial revolution. However, the causes of this increase remain unclear; proposed hypotheses rely on fluctuations in either the magnitude of CH4 sources or CH4 atmospheric lifetime, or both. Here we use an Earth System model to provide a comprehensive assessment of these competing hypotheses, including estimates of uncertainty. We show that in this model, the global LGM CH4 source was reduced by 28-46%, and the lifetime increased by 2-8%, with a best-estimate LGM CH4 concentration of 463-480ā€‰p.p.b.v. Simulating the observed LGM concentration requires a 46-49% reduction in sources, indicating that we cannot reconcile the observed amplitude. This highlights the need for better understanding of the effects of low CO2 and cooler climate on wetlands and other natural CH4 sources

    Contribution of Various Carbon Sources Toward Isoprene Biosynthesis in Poplar Leaves Mediated by Altered Atmospheric CO2 Concentrations

    Get PDF
    Biogenically released isoprene plays important roles in both tropospheric photochemistry and plant metabolism. We performed a 13CO2-labeling study using proton-transfer-reaction mass spectrometry (PTR-MS) to examine the kinetics of recently assimilated photosynthate into isoprene emitted from poplar (Populus Ɨ canescens) trees grown and measured at different atmospheric CO2 concentrations. This is the first study to explicitly consider the effects of altered atmospheric CO2 concentration on carbon partitioning to isoprene biosynthesis. We studied changes in the proportion of labeled carbon as a function of time in two mass fragments, M41+, which represents, in part, substrate derived from pyruvate, and M69+, which represents the whole unlabeled isoprene molecule. We observed a trend of slower 13C incorporation into isoprene carbon derived from pyruvate, consistent with the previously hypothesized origin of chloroplastic pyruvate from cytosolic phosphenolpyruvate (PEP). Trees grown under sub-ambient CO2 (190 ppmv) had rates of isoprene emission and rates of labeling of M41+ and M69+ that were nearly twice those observed in trees grown under elevated CO2 (590 ppmv). However, they also demonstrated the lowest proportion of completely labeled isoprene molecules. These results suggest that under reduced atmospheric CO2 availability, more carbon from stored/older carbon sources is involved in isoprene biosynthesis, and this carbon most likely enters the isoprene biosynthesis pathway through the pyruvate substrate. We offer direct evidence that extra-chloroplastic rather than chloroplastic carbon sources are mobilized to increase the availability of pyruvate required to up-regulate the isoprene biosynthesis pathway when trees are grown under sub-ambient CO2

    Solar ultraviolet radiation and ozone depletion-driven climate change: Effects on terrestrial ecosystems

    Get PDF
    In this assessment we summarise advances in our knowledge of how UV-B radiation (280-315 nm), together with other climate change factors, influence terrestrial organisms and ecosystems. We identify key uncertainties and knowledge gaps that limit our ability to fully evaluate the interactive effects of ozone depletion and climate change on these systems. We also evaluate the biological consequences of the way in which stratospheric ozone depletion has contributed to climate change in the Southern Hemisphere. Since the last assessment, several new findings or insights have emerged or been strengthened. These include: (1) the increasing recognition that UV-B radiation has specific regulatory roles in plant growth and development that in turn can have beneficial consequences for plant productivity via effects on plant hardiness, enhanced plant resistance to herbivores and pathogens, and improved quality of agricultural products with subsequent implications for food security; (2) UV-B radiation together with UV-A (315-400 nm) and visible (400-700 nm) radiation are significant drivers of decomposition of plant litter in globally important arid and semi-arid ecosystems, such as grasslands and deserts. This occurs through the process of photodegradation, which has implications for nutrient cycling and carbon storage, although considerable uncertainty exists in quantifying its regional and global biogeochemical significance; (3) UV radiation can contribute to climate change via its stimulation of volatile organic compounds from plants, plant litter and soils, although the magnitude, rates and spatial patterns of these emissions remain highly uncertain at present. UV-induced release of carbon from plant litter and soils may also contribute to global warming; and (4) depletion of ozone in the Southern Hemisphere modifies climate directly via effects on seasonal weather patterns (precipitation and wind) and these in turn have been linked to changes in the growth of plants across the Southern Hemisphere. Such research has broadened our understanding of the linkages that exist between the effects of ozone depletion, UV-B radiation and climate change on terrestrial ecosystems

    Evidence-based Kernels: Fundamental Units of Behavioral Influence

    Get PDF
    This paper describes evidence-based kernels, fundamental units of behavioral influence that appear to underlie effective prevention and treatment for children, adults, and families. A kernel is a behaviorā€“influence procedure shown through experimental analysis to affect a specific behavior and that is indivisible in the sense that removing any of its components would render it inert. Existing evidence shows that a variety of kernels can influence behavior in context, and some evidence suggests that frequent use or sufficient use of some kernels may produce longer lasting behavioral shifts. The analysis of kernels could contribute to an empirically based theory of behavioral influence, augment existing prevention or treatment efforts, facilitate the dissemination of effective prevention and treatment practices, clarify the active ingredients in existing interventions, and contribute to efficiently developing interventions that are more effective. Kernels involve one or more of the following mechanisms of behavior influence: reinforcement, altering antecedents, changing verbal relational responding, or changing physiological states directly. The paper describes 52 of these kernels, and details practical, theoretical, and research implications, including calling for a national database of kernels that influence human behavior

    Coral endosymbionts (Symbiodiniaceae) emit species-specific volatilomes that shift when exposed to thermal stress

    Full text link
    Ā© 2019, The Author(s). Biogenic volatile organic compounds (BVOCs) influence organism fitness by promoting stress resistance and regulating trophic interactions. Studies examining BVOC emissions have predominantly focussed on terrestrial ecosystems and atmospheric chemistry ā€“ surprisingly, highly productive marine ecosystems remain largely overlooked. Here we examined the volatilome (total BVOCs) of the microalgal endosymbionts of reef invertebrates, Symbiodiniaceae. We used GC-MS to characterise five species (Symbiodinium linucheae, Breviolum psygmophilum, Durusdinium trenchii, Effrenium voratum, Fugacium kawagutii) under steady-state growth. A diverse range of 32 BVOCs were detected (from 12 in D. trenchii to 27 in S. linucheae) with halogenated hydrocarbons, alkanes and esters the most common chemical functional groups. A thermal stress experiment on thermally-sensitive Cladocopium goreaui and thermally-tolerant D. trenchii significantly affected the volatilomes of both species. More BVOCs were detected in D. trenchii following thermal stress (32 Ā°C), while fewer BVOCs were recorded in stressed C. goreaui. The onset of stress caused dramatic increases of dimethyl-disulfide (98.52%) in C. goreaui and nonanoic acid (99.85%) in D. trenchii. This first volatilome analysis of Symbiodiniaceae reveals that both species-specificity and environmental factors govern the composition of BVOC emissions among the Symbiodiniaceae, which potentially have, as yet unexplored, physiological and ecological importance in shaping coral reef community functioning

    Emissions from prescribed fires in temperate forest in south-east Australia: implications for carbon accounting

    Get PDF
    We estimated emissions of carbon, as equivalent CO2 (CO2e), from planned fires in four sites in a south-eastern Australian forest. Emission estimates were calculated using measurements of fuel load and carbon content of different fuel types, before and after burning, and determination of fuel-specific emission factors. Median estimates of emissions for the four sites ranged from 20 to 139 Mg CO2e haāˆ’1. Variability in estimates was a consequence of different burning efficiencies of each fuel type from the four sites. Higher emissions resulted from more fine fuel (twigs, decomposing matter, near-surface live and leaf litter) or coarse woody debris (CWD; \u3e 25 mm diameter) being consumed. In order to assess the effect of declining information quantity and the inclusion of coarse woody debris when estimating emissions, Monte Carlo simulations were used to create seven scenarios where input parameters values were replaced by probability density functions. Calculation methods were (1) all measured data were constrained between measured maximum and minimum values for each variable; (2) as in (1) except the proportion of carbon within a fuel type was constrained between 0 and 1; (3) as in (2) but losses of mass caused by fire were replaced with burning efficiency factors constrained between 0 and 1; and (4) emissions were calculated using default values in the Australian National Greenhouse Accounts (NGA), National Inventory Report 2011, as appropriate for our sites. Effects of including CWD in calculations were assessed for calculation Method 1, 2 and 3 but not for Method 4 as the NGA does not consider this fuel type. Simulations demonstrate that the probability of estimating true median emissions declines strongly as the amount of information available declines. Including CWD in scenarios increased uncertainty in calculations because CWD is the most variable contributor to fuel load. Inclusion of CWD in scenarios generally increased the amount of carbon lost. We discuss implications of these simulations and how emissions from prescribed burns in temperate Australian forests could be improved
    corecore