20 research outputs found

    Gut microbiota role in dietary protein metabolism and health-related outcomes: The two sides of the coin

    Get PDF
    Background: Human gut bacteria can synthesize proteinogenic amino acids and produce a range of metabolites via protein fermentation, some known to exert beneficial or harmful physiological effects on the host. However, the effects of the type and amount of dietary protein consumed on these metabolic processes, as well as the effects of the microbiota-derived amino acids and related metabolites on the host health are still predominantly unknown. Scope and approach:This review provides an up-to-date description of the dominant pathways/genes involved in amino acid metabolism in gut bacteria, and provides an inventory of metabolic intermediates derived from bacterial protein fermentation that may affect human health. Advances in understanding bacterial protein fermentation pathways and metabolites generated at a global level via the implementation of ‘omics’ technologies are reviewed. Finally, the impact of dietary protein intake and high-protein diets on human health is discussed. Key findings and conclusions:The intestinal microbiota is able to synthesize amino acids, but the net result of amino acid production and utilization, according to dietary patterns still needs to be determined. The amount of ingested dietary protein appears to modify both the diversity and composition of the intestinal microbiota as well as the luminal environment of the intestinal epithelium and peripheral tissues. The understanding of the consequences of such changes on the host physiology and pathophysiology is still in an early stage but major progress is expected in the near future with the investigation of host-microbe omics profiles from well-controlled human intervention studies.This works is supported by the European Union's Seventh Framework Program under the grant agreement no 613979 (MyNewGut).Peer reviewe

    Gut microbiota, diet, and obesity-related disorders - The good, the bad, and the future challenges

    Get PDF
    Diet has been shown to be a major factor in modulating the structure of the mammalian gut microbiota by providing specific nutrient sources and inducing environmental changes (pH, bile acids) in the gut ecosystem. Long-term dietary patterns and short-term interventions have been shown to induce changes in gut microbiota structure and function, with several studies revealing metabolic changes likely resulting from the host microbiota cross-talk, which ultimately could influence host physiology. However, a more precise identification of the specific dietary patterns and food constituents that effectively modulate the gut microbiota and bring a predictable benefit to the host metabolic phenotype is needed to establish microbiome-based dietary recommendations. Here, we briefly review the existing data regarding gut microbiota changes induced by different macronutrients and the resulting metabolites produced via their respective fermentation, including their potential effects on obesity and associated metabolic disorders. We also discuss major limitations of current dietary intervention studies as well as future needs of applying cutting-edge “omic” techniques and of progressing in functional microbiota gene discovery to establish robust causal relationships between the dietary microbiota induced changes and metabolic health or disease.This works is supported by the European Union’s Seventh Framework Program under the grant agreement no 613979 (MyNewGut) and grant AGL2014-52101-P from the Spanish Ministry of Economy and Competitiveness (MINECO, Spain). The FPU scholarship of V. Cerrudo from MECD (Spain) is fully acknowledged.Peer reviewe

    Improved hemodynamic and liver function in portal hypertensive cirrhotic rats after administration of B. pseudocatenulatum CECT 7765

    Get PDF
    Purpose: Evaluating whether changes in gut microbiota induced by a bifidobacterial strain may have an effect on the hepatic vascular function in portal hypertensive cirrhotic rats.Methods: Bile duct ligation (BDL) was performed in rats. A subgroup of animals received B. pseudocatenulatum CECT7765 (109 cfu/daily ig.) for 1 week prior to laparotomy. Hemodynamic, biochemical and inflammatory markers were evaluated. Ileal microbiota composition was identified. Statistical analysis was performed.Results: Sham-operated (n = 6), BDL (n = 6) and BDL treated with bifidobacteria (n = 8) rats were included. B. pseudocatenulatum CECT7765 significantly decreased proteobacteria (p = 0.001) and increased Bacteroidetes (p = 0.001) relative abundance. The bifidobacteria decreased the Firmicutes/Bacteroidetes ratio in the BDL model (p = 0.03). BDL with bifidobacteria vs BDL rats showed: significantly reduced portal vein area, portal flow, congestion index, alkaline phosphatase and total bilirubin, significantly increased serum cytokines and nitric oxide levels, gene expression levels of bile acids receptor FXR and endothelial nitric oxide synthase. Quantitative changes in the Clostridiales and Bacteroidales orders were independently associated with variations in portal vein area and portal flow, while changes in the Proteobacteria phylum were independently associated with congestion. Variations in all liver function markers significantly correlated with total OTUs mainly in the Firmicutes, but only changes in the Clostridiales were independently associated with alkaline phosphatase in the ANCOVA analysis.Conclusion: Hemodynamic alterations and liver dysfunction induced by BDL in rats are partially restored after oral administration of B. pseudocatenulatum CECT7765. Results provide a proof-of-concept for the beneficial effect of this bifidobacterial strain in reducing complications derived from portal hypertension in cirrhosis

    Evaluation of dynamic microbial communities in a styrene-degrading biotrickling filter using 16S rDNA tag pyrosequencing and denaturing gradient gel electrophoresis

    Get PDF
    Accurately characterizing microbial communities within bioreactors undergoing dynamic operating conditions is an essential first step towards understanding the relationship between microbial community structure and bioreactor performance. A detailed assessment of the changes in microbial populations within a styrene-degrading biotrickling filter was carried out using samples collected at multiple time points ranging from 21 to 155 days of biotrickling filter operation. Examination of microbial populations was conducted by 16S rDNA tag pyrosequencing and denaturing gradient gel electrophoresis (DGGE). Validation of pyrosequencing results was performed by quantitative polymerase chain reaction (qPCR) in order to examine the relative changes in percentages of selected taxonomic groups. Pyrosequencing results revealed a predominance of bacteria assigned to the phylum Proteobacteria for all sampling time points in the bioreactor. Relative fluctuations in percentages of total bacterial sequences assigned to selected taxonomic groups detected by pyrosequencing during biotrickling filter operation were confirmed by qPCR. Pyrosequencing revealed substantial changes in the community structure between sampling time points, with observed differences in microbial diversity indices and operational taxonomic units (OTUs) among certain samples. DGGE further revealed shifts in the dominant microbial species during changes in biotrickling filter operational parameters. The application of several different molecular tools to examine changes within microbial populations from bioreactors allows a more detailed view of the community structure as compared to using only one molecular method. This study highlights both the complementary as well as contrasting information that can be obtained in characterizing microbial populations using multiple molecular methods

    Fatty Acid Profile of Mature Red Blood Cell Membranes and Dietary Intake as a New Approach to Characterize Children with Overweight and Obesity

    Get PDF
    Obesity is a chronic metabolic disease of high complexity and of multifactorial origin. Understanding the effects of nutrition on childhood obesity metabolism remains a challenge. The aim of this study was to determine the fatty acid (FA) profile of red blood cell (RBC) membranes as a comprehensive biomarker of children's obesity metabolism, together with the evaluation of their dietary intake. An observational study was carried out on 209 children (107 healthy controls, 41 who were overweight and 61 with obesity) between 6 and 16 years of age. Mature RBC membrane phospholipids were analyzed for FA composition by gas chromatography-mass spectrometry (GC-MS). Dietary habits were evaluated using validated food frequency questionnaires (FFQ) and the Mediterranean Diet Quality Index for children (KIDMED) test. Compared to children with normal weight, children with obesity showed an inflammatory profile in mature RBC FAs, evidenced by higher levels of omega-6 polyunsaturated FAs (mainly arachidonic acid, p < 0.001). Children who were overweight or obese presented lower levels of monounsaturated FA (MUFA) compared to children with normal weight (p = 0.001 and p = 0.03, respectively), resulting in an increased saturated fatty acid (SFA)/MUFA ratio. A lower intake of nuts was observed for children with obesity. A comprehensive membrane lipidomic profile approach in children with obesity will contribute to a better understanding of the metabolic differences present in these individuals.This work was supported by the Department of Environment: Territorial Planning: Agriculture and Fisheries of the Basque Country Government (ELKARTEK 2017: and Innovation Fund 2017); the Department of Health of the Basque Government (2017222033: OBESIA 2016-2019); the Centre for the Development of Industrial Technology (CDTI) of the Spanish Ministry of Science and Innovation under the grant agreement: TECNOMIFOOD project (CER-20191010); the INC (INTERNATIONAL NUT AND DRIED FRUIT COUNCIL) under the grant agreement OBINUT project (2016(II)-R01)

    NOD1 deficiency promotes an imbalance of thyroid hormones and microbiota homeostasis in mice fed high fat diet

    Get PDF
    The contribution of the nucleotide-binding oligomerization domain protein NOD1 to obesity has been investigated in mice fed a high fat diet (HFD). Absence of NOD1 accelerates obesity as early as 2 weeks after feeding a HFD. The obesity was due to increases in abdominal and inguinal adipose tissues. Analysis of the resting energy expenditure showed an impaired function in NOD1-deficient animals, compatible with an alteration in thyroid hormone homeostasis. Interestingly, free thyroidal T4 increased in NOD1-deficient mice fed a HFD and the expression levels of UCP1 in brown adipose tissue were significantly lower in NOD1-deficient mice than in the wild type animals eating a HFD, thus contributing to the observed adiposity in NOD1-deficient mice. Feeding a HFD resulted in an alteration of the proinflammatory profile of these animals, with an increase in the infiltration of inflammatory cells in the liver and in the white adipose tissue, and an elevation of the circulating levels of TNF-α. In addition, alterations in the gut microbiota in NOD1-deficient mice correlate with increased vulnerability of their ecosystem to the HFD challenge and affect the immune-metabolic phenotype of obese mice. Together, the data are compatible with a protective function of NOD1 against low-grade inflammation and obesity under nutritional conditions enriched in saturated lipids. Moreover, one of the key players of this early obesity onset is a dysregulation in the metabolism and release of thyroid hormones leading to reduced energy expenditure, which represents a new role for these hormones in the metabolic actions controlled by NOD1.This work was supported by Grants SAF2017-82436R, AGL2017-88801-P and SAF2016-75004R from MINECO/AEI/FEDER/EU, S2017/BMD-3686 from Comunidad de Madrid, CIVP18A3864 from Fundación Ramón Areces and CIBERCV and CIBERHED (funded by the Instituto de Salud Carlos III) and Fondos FEDER.Peer reviewe

    Erythrocyte Membrane Nanomechanical Rigidity Is Decreased in Obese Patients

    Get PDF
    This work intends to describe the physical properties of red blood cell (RBC) membranes in obese adults. The hypothesis driving this research is that obesity, in addition to increasing the amount of body fat, will also modify the lipid composition of membranes in cells other than adipocytes. Forty-nine control volunteers (16 male, 33 female, BMI 21.8 ± 5.6 and 21.5 ± 4.2 kg/m2, respectively) and 52 obese subjects (16 male and 36 female, BMI 38.2± 11.0 and 40.7 ± 8.7 kg/m2, respectively) were examined. The two physical techniques applied were atomic force microscopy (AFM) in the force spectroscopy mode, which allows the micromechanical measurement of penetration forces, and fluorescence anisotropy of trimethylammonium diphenylhexatriene (TMA-DPH), which provides information on lipid order at the membrane polar–nonpolar interface. These techniques, in combination with lipidomic studies, revealed a decreased rigidity in the interfacial region of the RBC membranes of obese as compared to control patients, related to parallel changes in lipid composition. Lipidomic data show an increase in the cholesterol/phospholipid mole ratio and a decrease in sphingomyelin contents in obese membranes. ω-3 fatty acids (e.g., docosahexaenoic acid) appear to be less prevalent in obese patient RBCs, and this is the case for both the global fatty acid distribution and for the individual major lipids in the membrane phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylserine (PS). Moreover, some ω-6 fatty acids (e.g., arachidonic acid) are increased in obese patient RBCs. The switch from ω-3 to ω-6 lipids in obese subjects could be a major factor explaining the higher interfacial fluidity in obese patient RBC membranes.This work was supported in part by the Basque Government Department of Economic Development, grant No. KK-2019/00028 (OBINTER); the Basque Government Department of Education, grants No. IT1264-19, IT1281-19, IT1270-19, and IT1625-22; the Basque Government Department of Health, grants No. 2019-222030, 2020-333023; Fundación Ramón Areces; and by Centre for the Development of Industrial Technology (CDTI) of the Spanish Ministry of Science and Innovation under the grant agreement: TECNOMIFOOD project (CER-20191010) and Basque Government: IT1625-22

    Species-level resolution of 16S rRNA gene amplicons sequenced through the MinION™ portable nanopore sequencer

    No full text
    Background: The miniaturised and portable DNA sequencer MinION™ has been released to the scientific community within the framework of an early access programme to evaluate its application for a wide variety of genetic approaches. This technology has demonstrated great potential, especially in genome-wide analyses. In this study, we tested the ability of the MinION™ system to perform amplicon sequencing in order to design new approaches to study microbial diversity using nearly full-length 16S rDNA sequences. Results: Using R7.3 chemistry, we generated more than 3.8 million events (nt) during a single sequencing run. These data were sufficient to reconstruct more than 90 % of the 16S rRNA gene sequences for 20 different species present in a mock reference community. After read mapping and 16S rRNA gene assembly, consensus sequences and 2d reads were recovered to assign taxonomic classification down to the species level. Additionally, we were able to measure the relative abundance of all the species present in a mock community and detected a biased species distribution originating from the PCR reaction using 'universal' primers. Conclusions: Although nanopore-based sequencing produces reads with lower per-base accuracy compared with other platforms, the MinION™ DNA sequencer is valuable for both high taxonomic resolution and microbial diversity analysis. Improvements in nanopore chemistry, such as minimising base-calling errors and the nucleotide bias reported here for 16S amplicon sequencing, will further deliver more reliable information that is useful for the specific detection of microbial species and strains in complex ecosystems.Authors thank the European 7th Framework Programme for funding ABP and KP, who were supported by the EC Project no. 613979 (MyNewGut)Peer reviewe
    corecore