244 research outputs found
The mass surface density in the local disk and the chemical evolution of the Galaxy
We have studied the effect of adopting different values of the total baryonic
mass surface density in the local disk at the present time in a model for the
chemical evolution of the Galaxy. We have compared our model results with the
G-dwarf metallicity distribution, the amounts of gas, stars, stellar remnants,
infall rate and SN rate in the solar vicinity, and with the radial abundance
gradients and gas distribution in the disk. This comparison strongly suggests
that the value of the total baryonic mass surface density in the local disk
which best fits the observational properties should lie in the range 50-75 Msun
pc-2, and that values outside this range should be ruled out.Comment: 6 pages, LaTeX, 3 figures, accepted for publication in the
Astrophysical Journal, uses emulateapj.st
Abundance Gradients and the Formation of the Milky Way
In this paper we adopt a chemical evolution model, which is an improved
version of the Chiappini, Matteucci and Gratton (1997) model, assuming two main
accretion episodes for the formation of the Galaxy. The present model takes
into account in more detail than previously the halo density distribution and
explores the effects of a threshold density in the star formation process,
during both the halo and disk phases. In the comparison between model
predictions and available data, we have focused our attention on abundance
gradients as well as gas, stellar and star formation rate distributions along
the disk. We suggest that the mechanism for the formation of the halo leaves
detectable imprints on the chemical properties of the outer regions of the
disk, whereas the evolution of the halo and the inner disk are almost
completely disentangled. This is due to the fact that the halo and disk
densities are comparable at large Galactocentric distances and therefore the
gas lost from the halo can substantially contribute to building up the outer
disk. We also show that the existence of a threshold density for the star
formation rate, both in the halo and disk phase, is necessary to reproduce the
majority of observational data in the solar vicinity and in the whole disk.
Moreover, we predict that the abundance gradients along the Galactic disk must
have increased with time and that the average [alpha/Fe] ratio in stars (halo
plus disk) slightly decrease going from 4 to 10 Kpcs from the Galactic center.
We also show that the same ratios increase substantially towards the outermost
disk regions and the expected scatter in the stellar ages decreases, because
the outermost regions are dominated by halo stars.Comment: 41 pages (including the figures), To be published in Ap
A Mechanism for the Oxygen and Iron Bimodal Radial Distribution Formation in the Disc of our Galaxy
Recently it has been proposed that there are two types of SN Ia progenitors
-- short-lived and long-lived. On the basis of this idea, we develope a theory
of a unified mechanism for the formation of the bimodal radial distribution of
iron and oxygen in the Galactic disc. The underlying cause for the formation of
the fine structure of the radial abundance pattern is the influence of spiral
arms, specifically, the combined effect of the corotation resonance and
turbulent diffusion. From our modelling we conclude that to explain the bimodal
radial distributions simultaneously for oxygen and iron and to obtain
approximately equal total iron output from different types of supernovae, the
mean ejected iron mass per supernova event should be the same as quoted in
literature if maximum mass of stars, that eject heavy elements, is . For the upper mass limit of the production of iron
by a supernova II explosion should be increased by about 1.5 times.Comment: 7 pages, 6 figures, MNRAS submitte
Confidence limits of evolutionary synthesis models III. On time-integrated quantities
Evolutionary synthesis models are a fundamental tool to interpret the
properties of observed stellar systems. In order to achieve a meaningful
comparison between models and real data, it is necessary to calibrate the
models themselves, i.e. to evaluate the dispersion due to the discreteness of
star formation as well as the possible model errors. In this paper we show that
linear interpolations in the log M - log t_k plane, that are customary in the
evaluation of isochrones in evolutionary synthesis codes, produce unphysical
results. We also show that some of the methods used in the calculation of
time-integrated quantities (kinetic energy, and total ejected masses of
different elements) may produce unrealistic results. We propose alternative
solutions to solve both problems. Moreover, we have quantified the expected
dispersion of these quantities due to stochastic effects in stellar
populations. As a particular result, we show that the dispersion in the 14N/12C
ratio increases with time.Comment: 11 pages, 8 figures, accepted by A&
A Search for Kinematic Evidence of Radial Gas Flows in Spiral Galaxies
CO and HI velocity fields of seven nearby spiral galaxies, derived from
radio-interferometric observations, are decomposed into Fourier components
whose radial variation is used to search for evidence of radial gas flows.
Additional information provided by optical or near-infrared isophotes is also
considered, including the relationship between the morphological and kinematic
position angles. To assist in interpreting the data, we present detailed
modeling that demonstrates the effects of bar streaming, inflow, and a warp on
the observed Fourier components. We find in all of the galaxies evidence for
either elliptical streaming or a warped disk over some range in radius, with
deviations from pure circular rotation at the level of ~20-60 km/s. Evidence
for kinematic warps is observed in several cases well inside R_{25}. No
unambiguous evidence for radial inflows is seen in any of the seven galaxies,
and we are able to place an upper limit of ~5-10 km/s (3-5% of the circular
speed) on the magnitude of any radial inflow in the inner regions of NGC 4414,
5033 and 5055. We conclude that the inherent non-axisymmetry of spiral galaxies
is the greatest limitation to the direct detection of radial inflows.Comment: 22 emulateapj pages with bitmapped colour figures, to appear in ApJ
(April 2004). For full resolution figures go to
http://www.atnf.csiro.au/people/twong/preprints
On the Initial Mass Function of Population III Stars
The collapse and fragmentation of filamentary primordial gas clouds are
explored using 1D and 2D hydrodynamical simulations coupled with the
nonequilibrium processes of H2 formation. The simulations show that depending
upon the initial density,there are two occasions for the fragmentation of
primordial filaments. If a filament has relatively low initial density, the
radial contraction is slow due to less effective H2 cooling. This filament
tends to fragment into dense clumps before the central density reaches
cm, where H2 cooling by three-body reactions is effective and
the fragment mass is more massive than some tens . In contrast, if a
filament is initially dense, the more effective H2 cooling with the help of
three-body reactions allows the filament to contract up to
cm. After the density reaches cm, the filament
becomes optically thick to H2 lines and the radial contraction subsequently
almost stops. At this final hydrostatic stage, the fragment mass is lowered
down to because of the high density of the filament. The
dependence of the fragment mass upon the initial density could be translated
into the dependence on the local amplitude of random Gaussian density fields or
the epoch of the collapse of a parent cloud. Hence, it is predicted that the
initial mass function of Population III stars is likely to be bimodal with
peaks of and , where the relative
heights could be a function of the collapse epoch.Comment: Accepted by Ap
A New Method of the Corotation Radius Evaluation in our Galaxy
We propose a new method for determination of the rotation velocity of the
galactic spiral density waves, correspondingly, the corotation radius, ,
in our Galaxy by means of statistical analysis of radial oxygen distribution in
the galactic disc derived over Cepheids. The corotation resonance happens to be
located at kpc, depending on the rate of gas infall on to
the galactic disc, the statistical error being kpc.
Simultaneously, the constant for the rate of oxygen synthesis in the galactic
disc was determined.
We also argue in favour of a very short time-scale formation of the galactic
disc, namely: Gyr. This scenario enables to solve the problem of
the lack of intergalactic gas infall.Comment: 5 pages, 5 figure, 1 tabl
Stellar Iron Abundances at the Galactic Center
We present measurements of [Fe/H] for six M supergiant stars and three giant
stars within 0.5 pc of the Galactic Center (GC) and one M supergiant star
within 30 pc of the GC. The results are based on high-resolution (lambda /
Delta lambda =40,000) K-band spectra, taken with CSHELL at the NASA Infrared
Telescope Facility.We determine the iron abundance by detailed abundance
analysis,performed with the spectral synthesis program MOOG.The mean [Fe/H] of
the GC stars is determined to be near solar,[Fe/H] = +0.12 0.22. Our
analysis is a differential analysis, as we have observed and applied the same
analysis technique to eleven cool, luminous stars in the solar neighborhood
with similar temperatures and luminosities as the GC stars. The mean [Fe/H] of
the solar neighborhood comparison stars, [Fe/H] = +0.03 0.16, is similar
to that of the GC stars. The width of the GC [Fe/H] distribution is found to be
narrower than the width of the [Fe/H] distribution of Baade's Window in the
bulge but consistent with the width of the [Fe/H] distribution of giant and
supergiant stars in the solar neighborhood.Comment: 41 pages, 9 figures, ApJ, in pres
Core-collapse supernova progenitor constraints using the spatial distributions of massive stars in local galaxies
We study the spatial correlations between the H emission and
different types of massive stars in two local galaxies, the Large Magellanic
Cloud (LMC) and Messier 33. We compare these to correlations derived for
core-collapse supernovae (CCSNe) in the literature to connect CCSNe of
different types with the initial masses of their progenitors and to test the
validity of progenitor mass estimates which use the pixel statistics method. We
obtain samples of evolved massive stars in both galaxies from catalogues with
good spatial coverage and/or completeness, and combine them with coordinates of
main-sequence stars in the LMC from the SIMBAD database. We calculate the
spatial correlation of stars of different classes and spectral types with
H emission. We also investigate the effects of distance, noise and
positional errors on the pixel statistics method. A higher correlation with
H emission is found to correspond to a shorter stellar lifespan, and we
conclude that the method can be used as an indicator of the ages, and therefore
initial masses, of SN progenitors. We find that the spatial distributions of
type II-P SNe and red supergiants of appropriate initial mass (9
) are consistent with each other. We also find the distributions of
type Ic SNe and WN stars with initial masses 20
consistent, while supergiants with initial masses around 15 are a
better match for type IIb and II-L SNe. The type Ib distribution corresponds to
the same stellar types as type II-P, which suggests an origin in interacting
binaries. On the other hand, we find that luminous blue variable stars show a
much stronger correlation with H emission than do type IIn SNe.ERC, STF
The evolution of H{\sc ii} galaxies: Testing the bursting scenario through the use of self-consistent models
We have computed a series of realistic and self-consistent models of the
emitted spectra of H{\sc ii} galaxies. Our models combine different codes of
chemical evolution, evolutionary population synthesis and photoionization. The
emitted spectrum of H{\sc ii} galaxies is reproduced by means of the
photoionization code CLOUDY, using as ionizing spectrum the spectral energy
distribution of the modelled H{\sc ii} galaxy, which in turn is calculated
according to a Star Formation History (SFH) and a metallicity evolution given
by a chemical evolution model that follows the abundances of 15 different
elements. The contribution of emission lines to the broad-band colours is
explicitly taken into account.
The results of our code are compared with photometric and spectroscopic data
of H{\sc ii} galaxies. Our technique reproduces observed diagnostic diagrams,
abundances, equivalent width-colour and equivalent width-metallicity relations
for local H{\sc ii} galaxies.Comment: 13 figures and 2 tables, accepted for publication in MNRAS Main
Journa
- …
