473 research outputs found

    Experimental determination of the statistics of photons emitted by a tunnel junction

    Get PDF
    We report on a microwave Hanbury-Brown Twiss experiment probing the statistics of GHz photons emitted by a tunnel junction in the shot noise regime at low temperature. By measuring the crosscorrelated fluctuations of the occupation numbers of the photon modes of both detection branches we show that, while the statistics of electrons is Poissonian, the photons obey chaotic statistics. This is observed even for low photon occupation number when the voltage across the junction is close to hν/eh\nu/e.Comment: Submitted to Phys.Rev.Let

    On the relevance of large scale pulsed-laser deposition: Evidence of structural heterogeneities in ZnO thin films

    Get PDF
    Pulsed-laser deposition is known as a well-suited method for growing thin films of oxide compounds presenting a wide range of functional properties. A limitation of this method for industrial process is the very anisotropic expansion dynamics of the plasma plume, which induces difficulties to grow on large scale films with homogeneous thickness and composition. The specific aspect of the crystalline or orientation uniformity has not been investigated, despite its important role on oxide films properties. In this work, the crystalline parameters and the texture of zinc oxide films are studied as a function of position with respect to the central axis of the plasma plume. We demonstrate the existence of large non-uniformities in the films. The stoichiometry, the lattice parameter, and the distribution of crystallites orientations drastically depend on the position with respect to the plume axis, i.e., on the oblique incidence of the ablated species. The origin of these non-uniformities, in particular, the unexpected tilted orientation of the ZnO c-axis may be attributed to the combined effects of the oblique incidence and of the ratio between oxygen and zinc fluxes reaching the surface of the growing film

    Controlled Synthesis of β-SiC Nanopowders with Variable Stoichiometry Using Inductively Coupled Plasma

    Get PDF
    In the growing field of nanomaterials, SiC nanoparticles arouse interest for numerous applications. The inductively coupled plasma (ICP) technique allows obtaining large amount of SiC nanopowders from cheap coarse SiC powders. In this paper, the effects on the SiC structure of the process pressure, the plasma gas composition, and the precursor nature are addressed. The powders were characterized by X-ray diffraction (XRD), Raman and fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and high resolution electron microscopy (HREM), chemical analyses, BET and photon correlation spectroscopy (PCS) measurements. Whatever the precursor (α- or β-SiC), the nanoparticles were crystallised in the cubic β-SiC phase, with average sizes in the 20-40nm range. Few residual grains of precursor were observed, and the decarburization due to the reductive Ar-H2 plasma lead to the appearance of Si nanograins. The stoichiometry of the final product was found to be controllable by the process pressure and the addition of methan

    Key parameters design for online battery electrochemical impedance tracker

    Get PDF
    International audienceNew applications in transport and energy storage require the use of Lithium-ion batteries. Advanced battery management systems including electrochemical impedance measurement are studied for the determination of the state of the battery, the prediction of the autonomy, the failure and security management. Taking into account constraints of cost and simplicity, we propose to use the existing electronics of current control and we evaluate the effect of the electronics design on the performance of a frequency evolutionary estimation of the electrochemical impedance. This recursive method relies on a wideband active approach and provides both an accurate estimate of the impedance in the frequency area and a tracking of its temporal variations. Benefits are the limitation of the data memory required and the amount of operations that can be completely carried out by a target such as a microcontroller. We propose a methodology to design the key parameters of electronics in function of the frequency band of interest and the desired accuracy. We highlighted that electronics of conventional BMS can host this tracking algorithm, with analog to digital converters of 10 bits or more, having an analog stage to adapt their dynamics, and that microcontrollers can be enough powerful to perform calculations, both in terms of number of operations and speed of execution. This design strategy has been applied to define a prototyping environment for a BMS based on an ARM microcontroller which is expected to provide the tracking impedance of a battery every 250 ms with less than 0,5 % of error

    Granular Activated Carbons from Agricultural By-products: Process Description and Estimated Cost of Production (Bulletin #881)

    Get PDF
    This bulletin is a follow-up, in part, of Bulletin #869, “Granular Activated Carbons from Agricultural By-products: Preparation, Properties and Application in Cane Sugar Refining.” An estimation of production costs for these by product-based carbons was considered prudent because of the potential interest from both bagasse and shell producers and activated carbon manufacturers based on the use of these carbons in various applications compared to commercial carbons.https://digitalcommons.lsu.edu/agcenter_bulletins/1034/thumbnail.jp

    Characterisation of Soil Organic Matter from Pensacola Bahiagrass Pastures Grazed for Four Years at Different Management Intensities

    Get PDF
    Soil fertility and agricultural system sustainability depend upon soil organic matter (SOM), particularly in the tropics, because of highly weathered soils and low fertiliser inputs. Because of the beneficial effects of SOM on chemical, physical, and biological soil properties, Greenland (1994) suggested that SOM is an indicator of agro-ecosystem sustainability. Pasture management may affect SOM by altering the production/decomposition ratio of residues (Johnson, 1995). The objective of this study was to characterise the SOM of Pensacola bahiagrass pastures grazed for four years at a range of management intensities

    Study of Cu/In/Se/Se thin films prepared by the Stacked Elemental Layer (SEL) technique

    Get PDF
    CuInSe2 thin films have been grown on Corning glass and Si (100) substrates using stacked elemental layers (SEL) processing. The influence of substrate’s nature and substrate’s temperature were studied. X-ray diffraction and SEM measurements have shown that the films exhibit an excellent crystallinity and crystallize in a tetragonal structure. Scanning electron microscopy investigations have shown that the films consist in a structure with large grains in the range 80 – 200 nm. Increasing the deposition temperature from room temperature to 300 °C has lead to a change in the composition and morphology of the films. Characteristic peaks of the chalcopyrite structure such as (101), (211) and (311) were clearly observed for both layers upon annealing at 450°C as evidenced by X-ray diffraction study. The determined lattice parameters were a = 0.57725 (6) nm, b = 1.1621 (2) nm for sample prepared at room temperature and a = 0.57770 (4) nm, b = 1.1602 (1) nm for Ts = 300°C. The crystallographic structure of the CuInSe2 sample was analyzed by Rietveld analysis using X-ray powder diffraction data. UV-Vis-NIR Spectrophotometry was used to investigate the optical characteristics of different Cu/In/Se/Se thin layers in the spectral range between 300 – 2000 nm. The optical band-gap of our materials increases from 0.98 to 1.01 eV

    Performance comparison of multi-user detectors for the downlink of a broadband MC-CDMA system

    Get PDF
    In this paper multi-user detection techniques, such as Parallel and Serial Interference Cancellations (PIC & SIC), General Minimum Mean Square Error (GMMSE) and polynomial MMSE, for the downlink of a broadband Multi-Carrier Code Division Multiple Access (MCCDMA) system are investigated. The Bit Error Rate (BER) and Frame Error Rate (FER) results are evaluated, and compared with single-user detection (MMSEC, EGC) approaches, as well. The performance evaluation takes into account the system load, channel coding and modulation schemes

    Applications of Nanoscale Materials in the Fields of Electrochemistry and Photoelectrochemistry

    Get PDF
    We have illustrated the important role played by the nanoscale materials in three-up-to-date energy topics
    corecore