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Abstract 

New applications in transport and energy storage require the use of Lithium-ion batteries. Advanced battery 

management systems including electrochemical impedance measurement are studied for the determination 

of the state of the battery, the prediction of the autonomy, the failure and security management. Taking into 

account constraints of cost and simplicity, we propose to use the existing electronics of current control and 

we evaluate the effect of the electronics design on the performance of a frequency evolutionary estimation 

of the electrochemical impedance. This recursive method relies on a wideband active approach and provides 

both an accurate estimate of the impedance in the frequency area and a tracking of its temporal variations. 

Benefits are the limitation of the data memory required and the amount of operations that can be completely 

carried out by a target such as a microcontroller. We propose a methodology to design the key parameters of 

electronics in function of the frequency band of interest and the desired accuracy. We highlighted that 

electronics of conventional BMS can host this tracking algorithm, with analog to digital converters of 10 bits 

or more, having an analog stage to adapt their dynamics, and that microcontrollers can be enough powerful 

to perform calculations, both in terms of number of operations and speed of execution. This design strategy 

has been applied to define a prototyping environment for a BMS based on an ARM microcontroller which is 

expected to provide the tracking impedance of a battery every 250 ms with less than 0,5 % of error. 

Keywords: lithium battery, BMS, impedance spectroscopy 

1 Introduction 
New applications as electric or hybrid transport, 

smart grid energy storage or connected objects 

require the use of batteries. Most of the time, 

Lithium-ion batteries are the chosen technology 

because of their outstanding performance such as 

high volumetric energy density, long calendar and 

cycle lifetime, and low self-discharge rate [1]. 

Efficient battery management system (BMS) is then 

important for the determination of the state of the 

battery, the prediction of the autonomy of the 

powered device, the management of the failure and 

the security. Classical BMS are systems which 

embed state estimators based on external 

measurements such as the current i(t) flowing 

through the battery, the voltage u(t) across its 

terminals and its surface temperature [2]. From 



EEVC - European Electric Vehicle Congress  2 

these quantities, the electrochemical impedance of 

the battery can be evaluated. It is a useful 

parameter representative of the dynamics of 

electrochemical systems [3], which is also studied 

to non-invasively diagnose the internal 

temperature [4] and the state of health [5] of the 

battery. Its integration within BMS is thus a major 

issue to improve the management of batteries. 

Various solutions are proposed for this 

integration, like using an electrical charger [6], or 

the power converter of the device [7], or the motor 

control [8] or more specific electronics [9]. Taking 

into account the constraints of cost and simplicity 

required in the intended applications, we propose 

to use the existing electronics of current control 

and we study the conditions for the integration of 

a frequency evolutionary estimation of the 

electrochemical impedance [10]. Therefore the 

goal of this study is to evaluate the effect of the 

electronics design on the performance of this 

estimator. All this work is conducted through 

representative simulations of a lithium nickel 

manganese cobalt oxide (NMC) battery of 2.2 Ah 

capacity from Samsung. 

2 Impedance estimation 
The method proposed for the impedance 

estimation provides both an accurate estimate of 

the electrochemical impedance in the frequency 

area and a tracking of its temporal variations.  

2.1 Wideband identification 

The process is based on a wideband active 

approach, as a small quantity of current is added 

to the main polarization current imposed on the 

battery. The waveform of the current is chosen to 

enable an excitation of the system over a flat wide 

frequency band. Among the variety of broadband 

signals we selected the pseudo-random binary 

sequence (PRBS) because of its frequency wealth 

and ease of integration [11]. Such a square signal 

can indeed be imposed on the battery repeatedly 

through a simple control of the transistor already 

present in BMS and usually used for the balancing 

stage. Then the voltage response is measured, and 

after suppression of the open current voltage 

(OCV) of the battery, the estimation process 

identifies its frequency response. This 

identification method is based on Fourier 

transforms and a local averaging strategy. 

 

If the battery behaves as a linear and time 

invariant (LTI) system, its electrical impedance 

Z(f) can be defined by the ratio given in Eq. (1) 

between the cross power spectral density (CPSD) 

Sui(f) between voltage and current, and the power 

spectral density (PSD) Sii(f) of the current [12]. 

 

Z(f) =
Sui(f)

Sii(f)
  if  Sii(f) ≠ 0 (1) 

 

We first estimate the two PSD Sii(f), Suu(f) and the 

CPSD Sui(f). The data are divided into blocks of 

same length by using a time window, and their 

discrete Fourier transform (DFT) is computed by 

using the fast Fourier transform algorithm.  

2.2 Strategies of tracking 

After an initialization step, the impedance is 

continuously updated using new blocks of data 

thanks to a recursive equation. Two strategies of 

averaging are considered. Both provide a fine 

tracking of the temporal evolution of the 

impedance, and the same quality of averaging if we 

equalize the equivalent noise bands of the two 

methods. 

2.2.1 Sliding widow averaging 

Data are averaged on N blocks sliding over the 

temporal signals. The estimator (Eq.2) is given by 

the CPSD for the kth block. 

  

Ŝuik(f) =
1

𝑁
∑ P̂uin(f)
𝑘
𝑛=𝑘−𝑁+1  (2) 

 

A recursive version of this average relation as 

defined in Eq.3 allows a tracking of the impedance 

evolution with time (or block of data).  

 

Ŝuik(f) = Ŝuik−1(f) +
P̂uik

(f)−P̂uik−N
(f)

𝑁
 (3) 

 

The first result of impedance estimation is provided 

after the processing of N blocks of measurement, 

and following estimation updates are available at 

the end of each new block of data. The equivalent 

band noise of the sliding window approach is equal 

to 1/N. 

2.2.2 Exponential averaging 

This second approach involves a forgetting factor 

(a) whose value controls a trade-off between the 

convergence time and the final estimation error. Eq. 

(4) gives the algorithm necessary to recursively 

estimate the CPSD Sui(f). Finally the battery 

impedance is estimated by the ratio of the estimated 

CPSD and PSD. 

 



EEVC - European Electric Vehicle Congress  3 

Ŝui−1 = 0 

P̂uik(f) = A ∗ Uk(f)Ik
∗(f) 

Ŝuik(f) = aŜuik−1(f) + (1 − a)P̂uik(f) (4) 

 

where A is a normalization factor, * denotes 

complex conjugation, Uk(f) (Ik(f) respectively) is 

the DFT of the kth block of voltage (current 

respectively), Puik(f) is the cross-periodogram of 

the kth block of voltage and current samples, and 

a∈[0;1] is the forgetting factor. The equalization 

of the equivalent noise bands of the two 

approaches described in this paper is done by 

linking the forgetting factor (a) to the number of 

blocks (N) through Eq.5: 

 

a =
N−1

N+1
 (5) 

3 Design methodology 
The methodology proposed to design the BMS 

components is described in Fig.1. It consists in the 

selection of the main algorithm and electronics 

parameters in function of the requirement for the 

estimation of the impedance (i.e. frequency band 

of interest, frequency resolution of the complex 

impedance, accuracy of the estimate, output 

refresh rate, time response or convergence delay). 

3.1 Choice of tracking strategy 

Tables 1 and 2 list selected key parameters of the 

tracking algorithm. Some are related to tracking 

performances (as convergence time for the first 

impedance estimation, update delay for the next 

impedance values) and others to electronics 

design (as memory size and number of elementary 

operations involved in calculating an estimate).  

Table1: key parameters of tracking algorithm based on 

a sliding window averaging 

Memory size N blocks 

Convergence 

time to R% 
N

R

100
− 1 

Update delay 1 block 

Noise band 

equivalent 
1/N 

Number of 

operations 

N*N_FFT additions 

N_FFT/2 multiplications 

 

Figure1: Design methodology (double line: input, thick 

line: output, square: electronics parameters) 

Table2: key parameters of tracking algorithm based on 

an exponential averaging 

Memory size 2 blocks 

Convergence 

time to R% 
(𝑙𝑛(1 − 𝑅/100)/𝑙𝑛 (

𝑁 − 1

𝑁 + 2
)) − 1 

Update delay 1 block 

Noise band 

equivalent 
(1-a)/(1+a) 

Number of 

operations 

2*N_FFT additions 

4*N_FFT multiplications 

 

The update delays of both averaging strategies are 

the same as a recursive implementation is chosen.   

 

In regards to the time required to provide the first 

estimate, a sliding window filtering is more 

interesting than an exponential averaging as the 

convergence time is lower. For example, as shown 

in Fig.2, the convergence time to 95 % of the final 

value of a sliding window filtering with N = 100 
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blocks is less than 100 s, whereas it reaches 150 s 

for the exponential approach on the same average 

conditions (i.e. a = 0,98). Thus, if the application 

requires just an estimate on request from time to 

time, this strategy can be effective to provide a fast 

response.  

 

 
Figure2: convergence time to R=95 % of the final value 

in function of the number of blocks (N) of the sliding 

window approach or the forgetting factor (a) of the 

exponential approach for an averaging on a same 

equivalent noise band 

 

Depending on the target, especially if a 

microcontroller is used, real and imaginary parts 

of complex variables are considered separately. 

The main steps of the algorithm are the centering 

of the measurement blocks and the computing of 

the DFT. This requires on the whole a small 

number of operations for both approaches that can 

be completely carried out by a target such as a 

microcontroller, if the frequency band and the 

tracking rate are not too high.  

 

Finally, the main advantage of the exponential 

averaging tracking is to limit the amount of data 

required for the estimation. Indeed only few 

blocks of data (current, voltage and intermediate 

quantities) need to be stored in the embedded 

memory as this recursive approach requires only 

the last block of the cross-periodogram and the 

previous block of the CPSD. The memory size is 

thus drastically reduced. Despite a delay in the 

convergence time of the algorithm for the first 

estimate, an exponential averaging is therefore 

preferred for the integration of the tracking 

algorithm on electronics, especially if the 

frequency band of interest for the determination of 

the electrochemical impedance is high (as higher 

sampling rate leads to higher number of points to 

process). 

3.2 Key parameters of the design 

The approach for fine electronics specifications 

consists in the evaluation of the effects of some 
key parameters of the design on the error between 

a known impedance and an estimated impedance. 

To represent a simplified electrical behaviour of the 

battery, a model with constant thermal condition 

based on an electrical equivalent circuit is used, 

with a known impedance (Zref(f)). A polarization 

current with a predefined PRBS is applied at the 

input of the model, and the voltage output is 

evaluated. This two simulated signals are used as 

inputs for the frequency identification method to 

provide the estimated impedance (Zk(f)). Design 

parameters (see Table 3) are applied to the process 

and modify the quality of the estimate. For example, 

measurement noises are considered as realizations 

of an additive centered Gaussian white noise on 

current and voltage, and the effect of the 

digitalization is modeled by a quantization of the 

measurements and a uniform noise whose power 

spectral density depends on the quantization step. 

Table3: list of the key parameters and values used for 

the simulations 

Measurement noises on 

current & voltage 

Signal to noise ratio 

[25;18;10;4] dB 

ADC parameters for the 

quantization of current 

& voltage 

Number of bits 

[8;10;12;14;16;18;20;

22;24] 

Sampling frequency for 

a PRBS addressing a 

frequency band with an 

upper frequency Fmax 

[2;5;10;15;20;25] 

*Fmax 

OCV compensation Either with a constant 

voltage  

Or with a linear model 

of the voltage with time 

 

DFT parameters [128;256;512; 

1024;2048] 

 

For each simulation, only one parameter varies 

while others are fixed to their best value. We 

quantify and compare the effect of each parameter 

through a relative error on the impedance (Eq. 6), 

defined in the frequency domain as the root mean 

squared error expressed as a percentage, averaged 

over the entire frequency band, and taken for the 

block k just after the convergence time which is 

driven by the forgetting factor involved in Eq. 4.  

 

𝑹𝑴𝑺𝑬𝒌 = 𝟏𝟎𝟎√
∫ |𝒁𝒓𝒆𝒇(𝒇)−�̂�𝒌(𝒇)|²𝒅𝒇𝒇∈𝑩

∫ |𝒁𝒓𝒆𝒇(𝒇)|²𝒅𝒇𝒇∈𝑩

 (6) 
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4 Design results 

4.1 Sensibility to design parameters 

Errors on impedance due to the effects of the 

design parameters stay globally low, which means 

that the estimated impedance is rather close to the 

known impedance. Nevertheless, the solution 

varies more or less around the true value. As en 

example, Fig.3 (resp. Fig.4) presents the effect on 

the Nyquist plot of the estimated impedance of the 

number of bits of the digitization of the signals 

(resp. the number of DFT points). Assuming no 

aliasing (low pass filtering) and that the input 

dynamic of the digitizer is adapted to the variation 

of voltage to acquire, at least 10 bits (resp. 12 bits) 

of quantization could provide an error inferior to 

1 % (resp. 0.1 %) on the impedance.  

 

 

Figure3: effect on the Nyquist plot of the estimated 

impedance of the number of bits of the digitization 

 

 

Figure4: effect on the Nyquist plot of the estimated 

impedance of the number of DFT points 

Figure5: effect on the Nyquist plot of the estimated 

impedance of the adaptation (or not) of the input 

dynamic of the ADC to signal range 

This specification corresponds to more efficient 

converters than those typically used in BMS 

dedicated to the monitoring of the voltage of cells, 

but remains accessible. If the dynamic of the 

analog-to-digital converter is not adapted (as 

illustrated on Fig.5) to the signal range, especially 

the voltage extend, at least two more bits are 

required for a given accuracy, depending on the 

voltage level and the range of the converter. It is 

therefore essential to add an analog stage for the 

adaptation, even roughly, of the input dynamic.  

 

Similarly, errors due to the choice of the number of 

DFT points indicate that 512 points is enough to 

deliver a good accuracy (RMSEk < 0.1 %). This 

quantity limits the amount of memory for the 

tracking, and the required computational time, with 

respect to the choice of the rate of sampling. Basic 

targets, like low power and low cost 

microcontrollers, could thus be considered if the 

frequency band of interest and resolution stay 

limited. 

 

The analysis of other results shows that the 

frequency sampling can be reduced, as long as the 

Nyquist criterion is observed. OCV compensation 

can be limited to the subtraction of a constant (like 

the mean of the voltage input) with no degradation 

on the impedance estimate. This compensation is 

therefore reduced to a low complexity stage. Such 

an operation is sufficient as long as the duration of 

a block of measurements remains short in regards to 

OCV variations (typically a few seconds). For 

longer duration, finer OCV compensation implies 

fitting the low frequency variations of the voltage 

with a higher-order function (as a polynomial). 



EEVC - European Electric Vehicle Congress  6 

4.2 Filtering setting 

The forgetting factor adjusts the noise filtering 

level on the estimation. That is what Fig.6 

illustrates, as errors on the estimate increase with 

the level of noise for a given forgetting factor, and 

decrease as the forgetting factor tends to 1 for a 

given signal to noise ratio, especially as the noise 

level is high and requires a great filtering.  

 

 

Figure6: effect of the forgetting factor on error RMSEk 

on the estimated impedance for noisy input signals 

But a compromise needs to be found between a 

strong averaging (corresponding to a close to 1), 

meaning that past events strongly affect the 

current estimate, and a short convergence delay 

with high capabilities of tracking (corresponding 

to a close to 0) but with more noise sensitivity. 

5 Application on a 

microcontroller 

Finally, these design considerations have been 

applied to define a prototyping environment for a 

BMS including the impedance tracker described 

previously. We have chosen a microcontroller unit 

from the 32 bits ARM family [13] with a flash 

memory of 32 Mo, analog-to-digital converters 

and a CAN communication interface.  

 

Our simulation and design tools allowed us to 

ascertain that the key parameters settings are 

suited to both provide a correct tracking of the 

impedance measurement (error near 0,3 % for a 

band of interest covering 20 to 90 Hz, with a 

tracking rate of 250 ms) and fulfil the timing 

constraints driven by the frequency band in which 

the impedance is estimated. All calculations are 

done while a new block of data is acquired, that is 

to say in less than 250 ms. Indeed table 4 gives the 

main results obtained on the prototype, for the 

timings of each task (a parallel execution is used 

through real time operating system), the frequency 

resolution provided in the frequency band of 

interest, and the size of the memory dedicated only 

to variables used by the tracker algorithm. 

 

Table4: results of the integration of the impedance 

tracker on a BMS platform 

Sampling frequency 500 Hz 

Number of points used 

for DFT (Radix-2) 
512 points 

Frequency resolution of 

the impedance estimate 
1 Hz 

Computation time of 

each DFT 
62 ms 

Computation time of 

each impedance 

estimate 

135 ms 

Delay time of CAN 

transmission 
20 ms 

Memory size (RAM) 16 ko 

 

6 Discussion 
The design methodology proposed is powerful to fit 

the key parameters of both algorithm and 

electronics to the main requirement of the 

impedance estimator, whether the output refresh 

rate or the convergence time or the frequency 

resolution. Some complementary information can 

also be added to focus on a more specific 

requirement. For example, the determination of the 

complex impedance value at a specific frequency or 

on a particular point in the Nyquist plot (like the 

point where the imaginary part of the impedance is 

null) can primarily constrain the design. Moreover, 

if the electronics is not combined with an external 

power supply, i.e. the battery under test supplies 

BMS components itself, an additional requirement 

on the consumption related to the process can limit 

the duration of the impedance tracker algorithm. 

7 Conclusions 
In conclusion, we have developed a methodology to 

design the key parameters of electronics dedicated 

to the impedance tracking of a battery, in function 

of the frequency band of interest and the desired 

accuracy. We highlighted that electronics of 

conventional BMS can host this tracking algorithm, 

with converters of 10 bits or more, having an analog 

stage to adapt their dynamics, and that 

microcontrollers can be enough powerful to 

perform calculations, both in terms of number of 

operations and speed of execution. This 

methodology will soon be applied for electronics 
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design in the European collaborative project 

3Ccar funded by the ECSEL Joint Undertaking. 
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