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Abstract In the growing field of nanomaterials, SiC nanoparticles arouse interest for

numerous applications. The inductively coupled plasma (ICP) technique allows obtaining

large amount of SiC nanopowders from cheap coarse SiC powders. In this paper, the

effects on the SiC structure of the process pressure, the plasma gas composition, and the

precursor nature are addressed. The powders were characterized by X-ray diffraction

(XRD), Raman and fourier transform infrared (FT-IR) spectroscopy, scanning electron

microscopy (SEM) and high resolution electron microscopy (HREM), chemical analyses,

BET and photon correlation spectroscopy (PCS) measurements. Whatever the precursor

(a- or b-SiC), the nanoparticles were crystallised in the cubic b-SiC phase, with average

sizes in the 20–40 nm range. Few residual grains of precursor were observed, and the

decarburization due to the reductive Ar–H2 plasma lead to the appearance of Si nanograins.

The stoichiometry of the final product was found to be controllable by the process pressure

and the addition of methane.

Keywords Powder processing � Nanoparticles � Silicon carbide

Introduction

SiC materials are widely used in many different kinds of applications. As a ceramic or

composite material, it is employed for its lightness, strength, hardness, wear resistance,

thermal and electrical conductivities, and high temperature stability. For instance, it can be
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found in rocket engines, turbine blades, structure material for nuclear reactors. When the

size of the grains that constitute the ceramic material is decreased to a nanometric scale,

the mechanical behaviour is modified and some enhanced or new properties may appear.

The use of ultrafine or nanometric powders is an efficient way to overcome the typical

drawbacks of carbide ceramics (low ductility, high brittleness). The decrease of the grain

size has already been proved to enhance the hardness [1] and to improve the resistance to

plasma erosion [2] and to thermal shocks [3]. Moreover, the reinforcement of a composite

by a nanometric component can lead to an increase in the performance of the obtained

material, as can be seen in the case of SiC/TiC composites [4, 5]. Concerning nuclear

applications, the high density of grain boundaries that can be encountered in nanostruc-

tured ceramics is assumed to permit a fast recovery of irradiation induced defects [6].

Beside these structure applications, nanosized SiC can also be encountered in other fields

such as power components for microelectronic, doping of oxide matrix for luminescence

applications [7], or new support for catalysts [8].

New techniques were developed during the last two decades to permit the synthesis of

SiC nanopowders, because the conventional high temperature ways (carboreduction of

silica, Acheson process [9]) were unable to produce ultrafine grains. Among these recent

techniques, one can find rapid carbothermal reduction [10], sol–gel process [11, 12], CVD-

based methods [13, 14], self-propagating high temperature synthesis (SHS [15]), micro-

wave driven reaction [16], or laser pyrolysis [17, 18]. Another approach is to create a

plasma to obtain the decomposition of a precursor that can be gaseous, liquid or solid.

Different groups around the world have developed such techniques, using different types of

precursors (SiO2 + CH4, Si anode + CH4, coarse SiC...) or plasma source (transfer arc,

DC or RF thermal plasma...) [19–25]. One of the tricky parts concerning the use of

powders as a precursor is to manage to introduce the powder inside the dense plasma. The

axial system developed in Empa Thun with the inductively coupled plasma (ICP) torch

permits to overcome this problem. The use of this ICP system with SiC coarse powder

precursor aiming to synthesize SiC nanoparticles is reported here.

Experimental Methods

The ICP setup developed at Empa consists of an induction plasma torch (PL-35, Tekna

Plasma systems Inc., Canada) mounted on the top of a 1,500 mm stainless steel water

cooled chamber with an inner diameter of 320 mm. The four turns plasma torch is con-

nected to a radio frequency (RF) generator (Elgotec AG, Switzerland) delivering a

maximum of 35 kW at 13.56 MHz. The synthesis reactor is associated with a powder filter

unit, a gas-flow control and vacuum system and is schematically presented in Fig. 1.

Coarse microscale SiC inlet powders, 6H a-SiC (SIKA-F1200B, Saint-Gobain Ceramic

Materials, Norway) and 3C b-SiC (B10, H.C.Starck, Germany) with an average particle

size around 3 and 1 lm, respectively were transported with a dense phase convey powder-

feeder (Impakt, DACS, Switzerland) and injected axially into the reactor through a

Ø 3.75 mm i.d. water cooled injection probe positioned at 65 mm above the torch exhaust.

In this process, the precursor particles are then heated and evaporated along the high

energy plasma and, through a controlled quenching, nanoparticles are produced. These

nanopowders were collected into the on-line sampling filter.

Pure argon was used for the central gas and for the carrier gas, whereas some methane

can be added to the carrier gas in some cases. The central gas is injected tangentially with a

swirl along the injection probe whereas the sheath gas, a mixing of pure Ar and H2, is
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introduced axially along the ceramic tube of the torch. In this study, the central gas flow

rate was kept constant to 12 slpm, while the sheath gas mixture flow rate was fixed to

80 slpm Ar + 6 slpm H2. Argon was injected for quenching through an eight-nozzle

quenching ring located at z = 120 mm from the torch exhaust (z reference shown in

Fig. 1). According to modelling and enthalpy probe measurements [26, 27], this position

corresponds, for the process parameters used for SiC1 reference sample (see Table 1) to an

axial plasma temperature of 3,000�C. In this paper, only the experiments performed with a

constant quenching gas flow rate of 30 slpm are described. The plate power was tuned to

16.25 kW for each experiment. The variable parameters of this study (precursor crystalline

phase, pressure, carrier gas composition) are summarized in Table 1 together with the

recorded values of the precursor feed rate.

Fig. 1 ICP reactor scheme

Table 1 Synthesis parameters for the different samples

Sample Precursor
phase

Pressure
(kPa)

Carrier gas
flow (slpm)

Precursor
feed
rate
(g min-1)

SiC1 6H–SiC 40 5 Ar 2.6 ± 0.2

SiC2 6H–SiC 30 5 Ar 3.3 ± 0.3

SiC3 6H–SiC 60 5 Ar 2.6 ± 0.2

SiC4 6H–SiC 40 4.9 Ar + 0.1 CH4 3.1 ± 0.3

SiC5 6H–SiC 40 4.7 Ar + 0.3 CH4 2.6 ± 0.2

SiC6 3C–SiC 40 5 Ar 2.7 ± 0.2
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The obtained powders were characterized by several investigation techniques. Chemical

analyses were performed in CNRS laboratory (Vernaison, France) by ICP-OES in order to

determine the composition of the SiC powders, with a relative uncertainty of 3%. X-ray

diffraction (XRD) measurements were performed on a Siemens D5000 diffractometer

operating with Cu-Ka1 radiation at 1.540598 Å (diagrams are shown here without the Ka2

contribution). Scanning electron microscopy (SEM) was achieved on a Hitachi HR-SEM

S4800 microscope. High resolution electron microscopy (HREM) observations were

recorded from a Jeol 2011 FEG microscope operated at 200 kV. Raman scattering spectra

were acquired on a Renishaw Ramanscope 3000 spectrometer with a 514 nm probe. The

Fourier transform infrared (FT-IR) spectra were recorded on a Perkin–Elmer FT-IR 2000

bench. A Malvern HS1000 apparatus was used to make the photon correlation spectros-

copy (PCS) measurements. For this latter investigation, the samples were sonicated in

water in order to obtain stable suspensions. The size distributions were recorded both in

number of particles (promoting the main population in number, i.e. the small grains in our

samples) and in scattered intensity (promoting the most scattering population, i.e. the big

particles). The BET specific surface measurements were performed on a Micromeretics

Flowsorb 2300 apparatus. The mean grain size SBET was calculated from the specific

surface area ABET with the following equation:

SBET ¼
6

q:ABET

where q is the powder effective density calculated from chemical analyses results.

Results and Discussion

A reference sample of SiC nanopowders (SiC1) was first synthesized with conventional

experimental parameters (see Table 1). The results concerning the structural characteristics

of this sample are discussed below.

Diffraction pattern recorded from SiC1 sample can be seen in Fig. 2 together with

reference patterns for b-SiC (cubic, 3C polytype), a-SiC (hexagonal, 6H polytype), and Si.

In the same figure is also given the diffraction diagram of the coarse precursor powder.

Considering the intensity ratios of the different peaks for SiC1, one can notice that the

main phase is 3C b-SiC, with contribution of 6H a-SiC. A third contribution can be

observed, corresponding to the Si phase (cubic). This is the consequence of the decarbu-

rization process consecutive to the reactions of the precursor C atoms with the H radicals of

the Ar–H2 plasma. As a matter of fact, the formation of C–H bonded molecules (methane,

acetylene, ethylene) has been detected by in situ infrared spectroscopy measurements in

Ar–H2 plasmas where carbide powder is introduced. In the present case, the C atoms come

from the precursor SiC powder. These latter are consumed in the hydrocarbon molecules

formation, and are no longer available for the creation of Si–C bonds. Guo et al. found

through thermodynamic calculation in a Ar–N2–CH4 plasma with Si powder as precursor

that the formation of pure Si and free C phases was possible, together with the formation of

SiC. The appearance of these monoatomic phases were found to depend on the Si/CH4

ratio and on the temperature that can influence the decomposition of CH4 [23]. Even

without H coming from the plasma gas, temperatures above 2,100�C lead to the formation

of gaseous hydrocarbon species from the decomposition of methane. In the present case,

with temperatures as high as 3,000�C, the C consuming formation of such gaseous species

is probably enhanced.
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The SiC1 sample is thus constituted by a mixture of 3C b-SiC, 6H a-SiC, and Si phases.

The presence of the a-SiC phase could be attributed to unreacted precursor grains that

would not have penetrated the dense plasma and therefore have followed a trajectory at the

edge of the plasma tail where the temperature is below the decomposition point of silicon

carbide (2,700�C). From the diffraction patterns, it is however not possible to say whether

the Si and b-SiC phases can be found as a composite inside a same grain (core-shell or

polycrystal-like structure) or in separated grains. The mixture of the three phases, added to

the broadening of the diffraction peaks and the poor diffraction signal/noise ratio from the

nanograins, makes the phase quantification and the crystallize size measurements from

these diagrams very difficult and thus weakly reliable. Nevertheless, considering only the

b-SiC phase, a mean crystallite size can be estimated to 36 nm from Scherrer’s formula

applied to the (111), (220), and (311) diffraction peaks FWHM. The peak broadening is

assumed to be consecutive to the size decrease as no strain is expected in grains formed in

the vapour phase in plasma. The same calculation, when applied to the (111) diffraction

line of Si, gives a mean crystallite size in the same order of magnitude (39 nm). In both

cases, one has to take into account the high uncertainty due to the quality of the diagrams.

These crystallite sizes, together with their reliability, are in agreement with the grain sizes

calculated from BET measurements (see Table 2) close to 30 nm. This latter remark,

together with the closeness of the values of the crystallite sizes estimated for SiC and Si,

seem to support the hypothesis describing a mixture of SiC and Si separated nanograins

instead of a core-shell structure.

Figure 3 shows a Raman spectrum recorded from SiC1 sample. On this spectrum,

several contributions can be observed. The two most intense, near 790 and 970 cm-1 can

be attributed either to b-SiC (planar optic mode TO at 796 cm-1, axial optic mode LO at

972 cm-1) or to a-SiC (TO at 796–797 cm-1, LO at 964–965 cm-1) [28]. The weak

contribution located near 765 cm-1 is characteristic of the TO mode at 767 cm-1 of the a-

SiC phase. The broad bands near 1,520, 1,620, and 1,710 cm-1 can also be ascribed to

optic modes of a-SiC [29]. The peak near 520 cm-1 is attributed to crystalline Si

(521 cm-1). This third phase was already observed on XRD diagrams, and is also detected

on the Raman spectrum. Raman spectroscopy is very sensitive to the presence of homo-

atomic species, as Si or C, when compared to hetero-atomic species as SiC. Even a small

amount of Si or C diluted in a SiC matrix can give a strong scattered intensity. Since no
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contribution can be observed in the 1,300–1,400 cm-1 region, we can conclude on the

absence of amorphous or ordered free C phase in the powder. This Raman spectrum

confirms the observations made from XRD measurements, but does not give an idea of the

phase distribution in the powder.

The chemical composition of the SiC1 sample (see Table 2) shows a large excess of Si

when compared to stoichiometric SiC. It confirms the decarburiztion of the stoichiometric

SiC precursor within the Ar–H2 plasma. This large Si excess is in good agreement with the

XRD and Raman observations of a separate silicon phase. Si–SiC nanopowders could be

interesting in order to achieve tight SiC parts where the open porosity would be filled by

the Si excess, as can be seen in reaction-bounded Si infiltrated SiC. Nevertheless, the

counterpart of this Si excess could be a high content of oxygen, as this latter element is

very sensitive to room temperature oxidization. However, the oxygen pollution is lower

than 5 wt%, which is not a high content if one takes into account the fast oxidization rate of

nanopowders when compared to micrometric sized grains. These oxygen atoms come on

the one hand from the oxidization of the Si excess in air after synthesis, and on the second

hand from the air that is introduced inside the chamber during the process from the

precursor powder tank. This air pollution also generates the small content in N. This is

confirmed by the oxygen contents of the SiC2 to SiC6 samples (that will be addressed later

in this paper), that increase with the Si/C ratio.

400 600 800 1000 1200 1400 1600 1800

0

1000

2000

3000

4000

5000

6000

7000

-SiC

In
te

ns
ity

 (
a.

u.
)

Raman shift (cm-1)

SiC1

-SiC

-SiC + -SiC

Si

Fig. 3 Raman spectrum
recorded for the SiC1 sample
with the corresponding peaks
attribution

Table 2 Characteristics of the different samples: oxygen content, Si/C ratio, RSiC/Si and Rb/a parameters,
BET specific surface area and subsequent size estimation

Sample O (wt%) Si/C (at.) RSiC/Si Rb/a ABET (m2 g-1) SBET (nm)

SiC1 4.95 ± 0.15 1.27 ± 0.08 4.2 ± 0.3 10.2 ± 07 65 ± 1.3 30.7 ± 1.5

SiC2 5.17 ± 0.16 1.23 ± 0.07 8.3 ± 0.6 5.0 ± 0.4 64 ± 1.3 30.8 ± 1.5

SiC3 6.39 ± 0.19 1.52 ± 0.09 1.7 ± 0.1 14.3 ± 1.0 58 ± 1.2 35.7 ± 1.8

SiC4 – 1.16 ± 0.07 7.9 ± 0.6 8.6 ± 0.6 70 ± 1.4 27.8 ± 1.4

SiC5 3.16 ± 0.09 0.92 ± 0.06 ? 9.9 ± 0.7 107 ± 2.1 17.5 ± 0.9

SiC6 8.97 ± 0.27 1.75 ± 0.10 1.5 ± 0.1 [20 104 ± 2.1 20.5 ± 1.0
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SEM picture recorded from SiC1 sample is presented in Fig. 4a. The grains size dis-

tribution and shapes appear to be inhomogeneous. A first population of nanograins can be

observed, with grain sizes in the same order of magnitude as the crystallite size estimated

from XRD diagrams for SiC or Si phase, meaning about 30 nm. This average size is in

rather good agreement with the BET measured sizes (see Table 2). Concerning this first

population, the size distribution ranges from 10 nm to 50 nm, which is rather narrow for

plasma synthesized powders if one takes into account the distribution of the temperatures

and velocities inside the plasma. The shapes of the grains are different from one to another,

far from being spherical. Another population can be observed (see insert of Fig. 4a),

constituting a minority. These grains, which sizes range from the submicron scale to a few

microns, are very few when compared to the amount of the first population (nanograins)

and show a shape with sharp edges similar to the one of raw precursor powder grains (see

Fig. 4b). These big grains are strongly assumed to be some residuals of the starting a-SiC

precursor powder. If this assumption turns to be true, it would support the hypothesis that

attributes the a-SiC phase seen on XRD diagrams and on Raman spectrum to non-fully

evaporated precursor grains.

Fig. 4 (a) SEM picture recorded for the SiC1 sample, with a picture of a precursor residual grain in the
insert. (b) SEM picture recorded for the raw a-SiC precursor powder
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Figure 5 shows an infrared spectroscopy absorption spectrum from SiC1 sample. Bulk

or polycrystalline films of SiC are known to exhibit an absorption band near 793 cm-1, but

when small-grained powders are concerned the absorption spectrum is redshifted with a

shift depending on the grains shape [30]. The crystalline phase does not seem to play a key

role on the absorption bands wavelengths, excepted when one polytype generates a par-

ticular shape for the nanoparticles. If the grains are purely spherical, the absorption band is

shifted to 900–930 cm-1, while the peak appears near 820–860 cm-1 for oblate and/or

prolate spheroids. In Fig. 5, the main peak is found near 830 cm-1, with a shouldered

component near 880 cm-1. It means that the nanograins are not spherical (confirmed by

SEM observations in Fig. 4), but exhibit different shapes in a continuous distribution that

leads to a single IR absorption band resulting from several contributions. The three other

bands that can be observed near 466 cm-1, 1,075 cm-1, and 1,190 cm-1 are character-

istics of Si–O bonds.

The size distribution was investigated using PCS measurements performed on the SiC1

sample. The results are given in Fig. 6. The presence of small isolated nanograins is

observed, together with very few big entities (100–300 nm) only seen in intensity mea-

surements because of their small amount. This latter contribution can come from

agglomerates that were not broken by the sonication treatment, or from the precursor

residuals incompletely evaporated. The average grain size was found to be about 20 nm for

this batch where no big entities with size in the micron range could be observed. Never-

theless, such big particles could be observed in other batches of the same sample,

corresponding to the ones observed in the insert of Fig. 4a. The corresponding diagrams

are not shown here, because the detector was blinded by the signal coming from the big

particles and was thus unable to detect the contribution of the small isolated particles.

The XRD measurements, as well as the Raman spectra, do not allow us to distinguish

whether one actually deals with a mixture of separate grains of different phases, or several

phases inside a same grain (core/shell structure). In order to determine the distribution of

the phases in the sample SiC1, HREM observations were performed on this sample and are

shown in Fig. 7a–e. Figure 7a gives an overview of the size and shape distribution in the

powder. The insert of Fig. 7a shows a diffraction pattern where several diffraction rings
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can be seen, corresponding to different phases in random orientation (powder diagram).

Considering each diffraction ring, the dhkl spacing can be calculated and the different

phases can be identified. From the pattern seen in Fig. 7b, the b-SiC, a-SiC, and Si phases

can be recognized (see the indexation of the diffraction rings in Table 3), confirming the

XRD observations. A careful exploration of the different grains seen in Fig. 7a was per-

formed in order to identify the repartition of the different phases. Figure 7c shows a typical

picture of a a-SiC grain, oriented along the [2-1-10] direction. The hexagonal structure
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Fig. 6 PCS size distribution in
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for the SiC1 sample

Fig. 7 (a) TEM picture of the SiC1 sample, with the corresponding diffraction pattern in the insert. (b)
TEM diffraction pattern recorded for the SiC1 sample, with labelled diffraction rings (see Table 3). (c)
HREM picture of a a-SiC nanograin for the SiC1 sample. In the insert, a magnification of the white framed
area together with the corresponding indexed Fourier transform. (d) HREM picture of a b-SiC nanograin for
the SiC1 sample. In the insert, a magnification of the white framed area together with the corresponding
indexed Fourier transform. (e) HREM picture of a Si nanograin for the SiC1 sample. In the insert, a
magnification of the white framed area together with the corresponding indexed Fourier transform
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can be clearly seen in the magnified area corresponding to the white frame. By means of a

Fourier transform of this area, the diffraction pattern can be re-built. This pattern is also

given in the insert, and shows the diffraction spots corresponding to the (0002), (01-11),

(01-10), and (01-1-1) planes of a monocrystalline hexagonal phase of SiC. All the

hexagonal grains that were observed were a few hundred nm in size. Concerning the cubic

phases, SiC and Si separate grains were found. Figure 7d exhibits a grain of b-SiC oriented

in the [110] direction. The same treatment as for Fig. 7c was applied to the white frame

area of Fig. 7d, and the corresponding diffraction pattern is shown in the insert. The

diffraction spots correspond to the (1-11), (002), and (-111) planes of a monocrystalline

cubic phase of SiC. Most of the cubic SiC grains were in the 10-50 nm range. Figure 7e

shows a picture of a Si grain (cubic) oriented in the [110] direction. The diffraction pattern,

shown in the insert and calculated from a Fourier transform of the area in the white frame,

reports the diffraction spots corresponding to the (1-11), (002), (-111), and (-220)

planes of a monocrystalline cubic phase of Si. Most of the Si grains were also in the

10–50 nm range.

These HREM observations confirm the previous characterization results concerning the

sizes and the crystalline phases, and clarify the distribution of these phases in the powder. The

a-SiC phase is due to the presence of some residuals of the starting a-SiC powder which grains

were not all fully vaporized in the plasma. The real products of the process are thus only cubic,

and consist in a mixture of SiC and Si separate grains in the 10–50 nm range.

In order to obtain a pure b-SiC nanopowder, the two other phases should be eliminated.

To avoid the presence of a-SiC precursor residuals, the process parameters (pressure in

particular) can be modified to enhance the vaporization of the coarse grains. Another way,

as we will see further in this work, is to use a b-SiC precursor. The use of a smaller-grained

precursor should also permit to decrease the amount of residuals, as small grains will be

easier to vaporize completely. This latter possibility is out of the scope of this paper, and

will be addressed in future work.

The process pressure was tuned in order to optimize the evaporation of the starting

a-SiC precursor. Even if the pressure does not influence much the temperature of the

plasma down to the quenching ring, it has a strong influence on the gas velocity and

Table 3 Attribution of the different numbered diffraction rings of Fig. 7b to the main phase contributions

Diffraction
ring n�

d (Å) Planes Crystalline
phase

1 3.14 ± 0.05 (111) Si

2 2.62 ± 0.05 (10–11) a-SiC

2.51 ± 0.05 (111) b-SiC

2.50 ± 0.05 (10–12) a-SiC

3 2.17 ± 0.05 (200) b-SiC

4 1.90 ± 0.05 (220) Si

5 1.64 ± 0.05 (311) Si

6 1.54 ± 0.05 (220) b-SiC

1.54 ± 0.05 (11–20) a-SiC

7 1.36 ± 0.05 (400) Si

1.31 ± 0.05 (311) b-SiC

1.31 ± 0.05 (11–26) a-SiC
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consequently on the residence time of the particles within the hot zone. Assuming the

particles have the same velocity as the plasma gases, the dwell times at T C 3,000�C till

the quenching ring calculated from modelling with a 10 kW net plasma power are 1.11,

1.49 and 3.24 ms for process pressures of 30, 40 and 60 kPa, respectively. Therefore at

high pressure, more precursor material should be evaporated and then less a-SiC should be

present in the final product.

Concerning the process pressure, two samples were prepared for P = 30 kPa (SiC2)

and P = 60 kPa (SiC3) with the same position of the quench ring, in order to be compared

to SiC1 (P = 40 kPa). Figure 8 shows two SEM pictures recorded at the same magnifi-

cation for SiC2 and SiC3 samples. The powder synthesized for the low value of pressure

exhibits smaller grains than the one at high pressure. This is confirmed by the BET

measurements (see Table 2). At low pressure, the growth of the particles is limited because

the collision between the growing grains that can lead to coalescence is inhibited. More-

over, the longer residence time observed at P = 60 kPa enhances the growth of the

particles.

At high pressure, the species remain longer in a hot zone where hydrogen molecules are

at least partially decomposed (the decomposition of H2 starts at about 2,000 K and reaches

a maximum at about 4,000 K [31]). This reducing atmosphere promotes the decarburi-

zation process as seen from the chemical compositions of the powders given in Table 2.

This is also confirmed by the XRD diagrams shown in Fig. 9 and recorded for SiC2 and

SiC3 samples.

As mentioned before, the quality of the diffraction data did not permit the reliable

refinement of the diagrams according to the Rietveld method, in order to quantify the phase

ratio. Nevertheless, a qualitative observation of the evolution of the intensity ratios with the

process pressure for some particular peaks can give a good idea of the effect of the pressure

on the presence of the different phases. Concerning the cubic and hexagonal phases of SiC,

the intensity of the peak located near 36� results mainly from the intensity of the (111) line

of b-SiC (main phase), but also from the (006) and (102) lines of 6H a-SiC as a smaller

contribution. The peak located near 38� is exclusively attributed to the (103) of 6H a-SiC.

The evolution of the intensity ratio between these two peaks should thus be qualitatively

representative of the evolution of the phase ratio between the cubic and hexagonal phases

of SiC. In this context, the Rb/a ratio was calculated from the formula given below:

Fig. 8 SEM pictures recorded for the SiC2 and SiC3 samples
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Rb=a ¼
I b�SiC 111ð Þ
� �

I a�SiC 103ð Þ
� �

where I (b-SiC(111)) is the intensity of the diffraction peak near 36� (mainly (111) of

b-SiC), and I (a-SiC(103)) the intensity of the (103) diffraction peak for 6H a-SiC (near

38�). The values were found to be Rb/a = 5.0 for SiC2 and Rb/a = 14.3 for SiC3, which

indicates a larger amount of hexagonal phase in SiC2 sample, synthesized for the low value

of the pressure (P = 30 kPa). As expected from the residence time consideration, the

increase of the process pressure appears to be an efficient way to lower the amount of

residual precursor in the final powder.

Considering now the SiC/Si ratio, i.e. the decarburization, the same qualitative approach

can be followed from the Fig. 9. This time, the intensity of the peak located near 29� and

exclusively attributed to the (111) line of the Si phase will be compared to the intensity of

the peak near 36� already addressed in the previous section. From these two peaks, the

RSiC/Si ratio is calculated as follows:

RSiC=Si ¼
I b�SiC 111ð Þ
� �

I Si 111ð Þ
� �

where I (Si(111)) the intensity of the (111) diffraction peak for Si. This ratio is much higher

for SiC2 (RSiC/Si = 8.3 instead of 1.7 for SiC3), supporting the explanation of the lower

efficiency of the decarburization at low pressure. This lower efficiency can be attributed to

the smaller amount of hydrogenous species available at low pressure and to the shorter

residence time (in comparison with SiC3). Finally, the use of a low pressure was identified

as the most likely to limit the decarburization process.
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Fig. 9 XRD diagrams recorded for the SiC2 and SiC3 samples, with partial peaks indexation. The
calculated values for Rb/a and RSiC/Si parameters are also given
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In order to compensate the decarburization that leads to a Si excess in the final nano-

powder, SiC4 and SiC5 samples were synthesized with an addition of methane

(respectively 0.1 slpm for SiC4 and 0.3 slpm for SiC5) in the Ar carrier gas. The other

parameters were kept equal to the ones used for SiC1 sample (see Table 1). The corre-

sponding diffraction diagrams are shown in Fig. 10. The same hexagonal and cubic phases

of SiC as for SiC1 (synthesized without CH4, see Fig. 2) can still be observed, the remarks

concerning this latter sample are also valid for SiC4 and SiC5. The difference with SiC1

consists in the decrease of the Si phase peak intensity. This decrease can already be clearly

seen for the SiC4 sample (see Table 2 for RSiC/Si values). For SiC5 sample, the Si phase

cannot be seen anymore by XRD. The efficient compensation of the decarburization by the

addition of CH4 is also confirmed by the chemical composition of the powders given in

Table 2. The BET measurements seem to indicate a very small grain size for the SiC5

sample, which is also the only sample containing an excess of C. This could be the

consequence of the formation of carbon black small particles in this sample elaborated with

the largest amount of methane. In that case, the BET size value given in Table 2 would not

be representative for the SiC nanograins but result from an average of the carbon black

particles with SiC grains. The presence of free carbon, that is not sensible to air oxidization

at room temperature, could also explain the poor content in oxygen of SiC5 sample. On the

other hand, free carbon on the surface of the nanograins can lead to a poor densification of

the ceramic parts after sintering, because of the perturbation it can induce in the matter

diffusion-lead processes between the grains. In such a case, the final mechanical properties

of the obtained nanostructured ceramic could be depredated.

SiC6 sample was synthesized with the same process conditions as SiC1, but this time

with a b-SiC precursor. Figure 11 shows the XRD diagram recorded for the SiC6 sample

and for the coarse precursor. As previously discussed for SiC1 sample, the decarburization

generated by the Ar–H2 plasma can be identified by the appearance of the Si phase lines in

the produced nanopowder SiC6. The 3C b-SiC phase is obviously the dominating phase in

SiC6 sample, as the precursor residuals also contribute to the cubic diffraction lines,

together with the nanopowder itself. Nevertheless, a weak contribution of a hexagonal

phase could be observed. In order to see if it was possible to find a-SiC grains in the

powder, HREM observations were performed on the SiC6 sample. Each observed nano-

grain was in the cubic phase, but in some cases some stacking faults are visible inside the
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Fig. 10 XRD diagrams recorded
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The calculated value for the RSiC/
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cubic grains. The presence of these structural defects can generate some hexagonal regions

in the cubic grains, as shown in Fig. 12. Such presence of hexagonal phase ascribed to

stacking faults in the cubic phase has already been observed in the case of SiC thin films

[32]. This could explain the small a-SiC contribution seen in Fig. 11. The HREM obser-

vations performed on this sample (as well as SEM pictures not given here) showed that

there were much less of these residuals when compared to the samples synthesized from

a-SiC precursor. This can be ascribed to the smaller size of the cubic precursor coarse

grains (1 lm instead of 3 lm for the hexagonal ones). The small grains are more efficiently

evaporated. The poor content in precursor residuals can also explain the small grain size

deduced from BET measurements (see Table 2). The sizes calculated for the other
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Fig. 12 HREM picture of a nanograin for the SiC6 sample. The grain is mainly cubic, but its middle part is
compatible with a-SiC structure
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samples, that contain more big residuals particles, are certainly overestimated because the

specific surface measurement takes into account the contribution of grain sizes in the

micron range.

Conclusion

The plasma synthesis allows the efficient production of SiC nanopowders from coarse SiC

powders through an evaporation/condensation process. The mean size of the nanoparticles

is around 30 nm. Whatever the crystalline phase of the coarse precursor, b-SiC cubic phase

is obtained in the SiC nanopowder. Few residual precursors grains are also observed, their

presence explains the hexagonal contribution in diffraction diagrams and Raman spectra

that was observed for the nanopowders synthesized from a-SiC precursor. A Si phase is

also present in some samples, as a result of the starting SiC decarburization by the Ar–H2

plasma.

The control of the b-SiC nanopowder stoichiometry, that is very crucial for the

mechanical properties of the future nanostructured ceramics, was found to be possible

through the tuning of the Ar–H2 plasma properties. On the one hand, H2 promotes the

formation of free Si, leading to the production of Si–SiC nanopowders that can be inter-

esting for the filling of open porosities but could also lead to high oxygen content. On the

second hand, the addition of CH4 compensates the decarburization process but leads

probably to the formation of free carbon that can lower the densification during sintering.

A low process pressure was found to decrease the decarburization efficiency, but also to

limit the evaporation yield of the precursor, leading to a larger content of hexagonal

precursor residuals.

Further investigations are now in progress in order to control the grain size together with

the size distribution (effects of the quench gas flow rate and nature, central gas flow rate...).

These studies also aim to obtain a pure cubic phase of SiC without any Si grains or

residuals of the precursor.
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2. Vassen R, Kaiser A, Stöver D (1996) J Nucl Mater 233–237:708
3. Donato A, Borsella E, Botti S, Martelli S, Nannetti CA, Mancini MR, Morjan IJ (1996) Nucl Mater

233–237:814
4. Chae KW, Niihara K, Kim DY (1995) J Mat Sci Lett 14:1332
5. Endo H, Ueki M, Kubo HJ (1991) Mat Sci 26:3769
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