75 research outputs found

    Plastidial Starch Phosphorylase in Sweet Potato Roots Is Proteolytically Modified by Protein-Protein Interaction with the 20S Proteasome

    Get PDF
    Post-translational regulation plays an important role in cellular metabolism. Earlier studies showed that the activity of plastidial starch phosphorylase (Pho1) may be regulated by proteolytic modification. During the purification of Pho1 from sweet potato roots, we observed an unknown high molecular weight complex (HX) showing Pho1 activity. The two-dimensional gel electrophoresis, mass spectrometry, and reverse immunoprecipitation analyses showed that HX is composed of Pho1 and the 20S proteasome. Incubating sweet potato roots at 45°C triggers a stepwise degradation of Pho1; however, the degradation process can be partially inhibited by specific proteasome inhibitor MG132. The proteolytically modified Pho1 displays a lower binding affinity toward glucose 1-phosphate and a reduced starch-synthesizing activity. This study suggests that the 20S proteasome interacts with Pho1 and is involved in the regulation of the catalytic activity of Pho1 in sweet potato roots under heat stress conditions

    A Quantitative Approach towards German Experiencer- Object Verbs

    No full text
    Poppek JM, Masloch S, Robrecht A, Kiss T. A Quantitative Approach towards German Experiencer- Object Verbs. Proceedings of the Second Workshop on Quantitative Syntax. 2021

    EO Verbs Binding Experiments

    No full text
    Materials related to a study of the possibility of backward binding with German experiencer-object verb

    Split Stimuli in German

    No full text
    Data and Scripts for Paper 'A Corpus-based Perspective on ‘Split Stimuli’ in German

    Phosphorylation inhibits turnover of the tau protein by the proteasome: influence of RCAN1 and oxidative stress

    No full text
    Hyperphosphorylated tau proteins accumulate in the paired helical filaments of neurofibrillary tangles seen in such tauopathies as Alzheimer's disease. In the present paper we show that tau turnover is dependent on degradation by the proteasome (inhibited by MG132) in HT22 neuronal cells. Recombinant human tau was rapidly degraded by the 20 S proteasome in vitro, but tau phosphorylation by GSK3β (glycogen synthase kinase 3β) significantly inhibited proteolysis. Tau phosphorylation was increased in HT22 cells by OA [okadaic acid; which inhibits PP (protein phosphatase) 1 and PP2A] or CsA [cyclosporin A; which inhibits PP2B (calcineurin)], and in PC12 cells by induction of a tet-off dependent RCAN1 transgene (which also inhibits PP2B). Inhibition of PP1/PP2A by OA was the most effective of these treatments, and tau hyperphosphorylation induced by OA almost completely blocked tau degradation in HT22 cells (and in cell lysates to which purified proteasome was added) even though proteasome activity actually increased. Many tauopathies involve both tau hyperphosphorylation and the oxidative stress of chronic inflammation. We tested the effects of both cellular oxidative stress, and direct tau oxidative modification in vitro, on tau proteolysis. In HT22 cells, oxidative stress alone caused no increase in tau phosphorylation, but did subtly change the pattern of tau phosphorylation. Tau was actually less susceptible to direct oxidative modification than most cell proteins, and oxidized tau was degraded no better than untreated tau. The combination of oxidative stress plus OA treatment caused extensive tau phosphorylation and significant inhibition of tau degradation. HT22 cells transfected with tau–CFP (cyan fluorescent protein)/tau–GFP (green fluorescent protein) constructs exhibited significant toxicity following tau hyperphosphorylation and oxidative stress, with loss of fibrillar tau structure throughout the cytoplasm. We suggest that the combination of tau phosphorylation and tau oxidation, which also occurs in tauopathies, may be directly responsible for the accumulation of tau aggregates

    Suppression of Autophagy and Activation of Glycogen Synthase Kinase 3beta Facilitate the Aggregate Formation of Tau

    No full text
    Neurofibrillary tangle (NFT) is a characteristic hallmark of Alzheimer's disease. GSK3β has been reported to play a major role in the NFT formation of tau. Dysfunction of autophagy might facilitate the aggregate formation of tau. The present study examined the role of GSK3β-mediated phosphorylation of tau species on their autophagic degradation. We transfected wild type tau (T4), caspase-3-cleaved tau at Asp421 (T4C3), or pseudophosphorylated tau at Ser396/Ser404 (T4-2EC) in the presence of active or enzyme-inactive GSK3β. Trehalose and 3-methyladenine (3-MA) were used to enhance or inhibit autophagic activity, respectively. All tau species showed increased accumulation with 3-MA treatment whereas reduced with trehalose, indicating that tau undergoes autophagic degradation. However, T4C3 and T4-2EC showed abundant formation of oligomers than T4. Active GSK3β in the presence of 3-MA resulted in significantly increased formation of insoluble tau aggregates. These results indicate that GSK3β-mediated phosphorylation and compromised autophagic activity significantly contribute to tau aggregation
    • …
    corecore