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Abstract

Background: Alzheimer disease (AD) is a progressive neurodegenerative disease that destroys memory and
cognitive skills. AD is characterized by the presence of two types of neuropathological hallmarks: extracellular plaques
consisting of amyloid β-peptides and intracellular neurofibrillary tangles of hyperphosphorylated tau proteins. The
disease affects 5 million people in the United States and 44 million world-wide. Currently there is no drug that can
cure, stop or even slow the progression of the disease. If no cure is found, by 2050 the number of alzheimer’s patients
in the U.S. will reach 15 million and the cost of caring for them will exceed $ 1 trillion annually.

Results: The present paper develops a mathematical model of AD that includes neurons, astrocytes, microglias and
peripheral macrophages, as well as amyloid β aggregation and hyperphosphorylated tau proteins. The model is
represented by a system of partial differential equations. The model is used to simulate the effect of drugs that either
failed in clinical trials, or are currently in clinical trials.

Conclusions: Based on these simulations it is suggested that combined therapy with TNF-α inhibitor and anti
amyloid β could yield significant efficacy in slowing the progression of AD.
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Background
AD is the most common form of dementia. The disease
is an irreversible, progressive, brain disorder that destroys
memory and cognitive skills, and eventually the ability to
carry out even the simplest tasks. While the genetic inher-
itability of AD is in the range of 50 –80% [1, 2], the cause
of the disease is mostly unknown. The disease strikes age-
ing people typically 65 or older, and twice more women
than men. In 2015 there were more than 5 million people
in the United States with AD, and 44 millions world-wide
[3]. The cost of caring for AD patients in the U.S. was
estimated at $226 billions for 2015 [3].
AD is characterized by the presence of two types of

neuropathological hallmarks: extracellular plaques and
intracellular neurofibrillary tangles (NFTs). The extracel-
lular plaques consist primarily of amyloid β-peptide (Aβ)
deposits. The NFTs are intraneural aggregation of hyper-
phosphorylated tau proteins. Reactive oxygen species
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(ROS) appears to be one of the early events in the pro-
gression of the disease [4]. Amyloid precursor protein
(APP) on neurons membrane constitutively shed Aβ pep-
tides [5]. High levels of ROS promote abnormal deposition
of Aβ [4, 6]. Tau protein in the central nervous system
(CNS) is predominantly expressed in neurons; its main
role is to promote microtubles assembly and stability.
Glycogen synthase kinase-type 3(GSK-3) is activated by
the abnormally produced Aβ , and it mediates the hyper-
phosphorylation of tau proteins [4, 6–9].
The hyperphosphorylated tau proteins cause microtu-

ble depolymerization and destruction, as they aggregate
to form neurofibrillary tangles. This results in neuronal
death and release of the NFTs to the extracellular environ-
ment [4, 10].
The non-neuronal cells in the brain consist of cells that

support neurons directly, mostly astrocytes, and immune
cells.
Microglias are the resident macrophages in the brain.

They constitute the main active immune cells in the brain.
They are activated by soluble Aβ oligomers which build
up from the Aβ deposits [11, 12].
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Astrocytes are in close proximity to neurons. They sup-
port neuronal cross-talk, and mediate the transport of
nutrients from the blood to neurons. Astrocytes are acti-
vated primarily by TNF-α, but also by Aβ [10, 13–16].
Activated astrocytes produce Aβ , but at a smaller rate
than neurons [16]. Activated astrocytes also produce
MCP-1, which attracts monocytes from the blood into
the plaques [17–19]. The monocytes differentiate into
proinflammatory macrophages, M̂1, but may then change
phenotype into anti-inflammatory M̂2 macrophage. Acti-
vated microglias have two phenotypes: proinflamma-
tory M1 macroglia and anti-inflammatory M2 macroglia
[12, 20]. Macrophages have a major role in Aβ clearance
[12, 20], but activated microglia are poorly phagocytic for
Aβ compared to peripheral macrophages [21].M1 and M̂1
macrophages are neurotoxic; they produce proinflamma-
tory cytokines TNF-α, IL-6, IL-12 and IL-1β [20, 22, 23].
M2 microglias and peripheral M̂2 macrophages produce
anti-inflammatory cytokines IL-10, IL-13, IL-4 and TGF-
β [20]. The neuronal stress caused by the proinflamma-
tory cytokines, is resisted by IL-10, IL-13 and IL-4, but
nevertheless it contributes to neuronal damage and death
[20, 22, 23].
There are currently no drugs that can cure AD, or stop

its progression. Many clinical trials of drugs aimed at pre-
venting or clearing the Aβ and tau pathology have failed
to demonstrate efficacy [24–27]. Currently the only treat-
ment of AD is by medications that are used to treat the
symptoms of the disease.
The role of TGF-β is somewhat controversial [28]. On

one hand, TGF-β provides protection against neuronin-
flammation and neurondegeneration [29–34], but on the
other hand, TGF-β-induced TIAF1 interacts with amy-
loid fibrils to favorably support plaque formation [28],
and blocking TGF-β-smad2/3 in peripheral macrophages
mitigates AD pathology [35].
Figure 1 is a schematics of the network associated with

the progression of AD. Figure 1a shows the network
within a neuron which leads from ROS to NFTs and the
destruction of microtubules. Figure 1b shows the network
of activated cells, microglia, astrocyte and monocyte-
derived macrophages and their effect on neurons and
their microenvironment.
In this paper we develop a mathematical model of AD.

Themodel is represented by a system of partial differential
equations (PDEs) based on Fig. 1. For simplicity we repre-
sent all the proinflammatory cytokines by TNF-α, and all
the anti-inflammatory cytokines by IL-10.
We shall use our model to conduct in silico tri-

als with several drugs: TNF-α inhibitor, anti-Aβ drug,
MCP-1 inhibitor, and injection of TGF-β . Simulations of
the model show that continuous treatment with TNF-α
inhibitor yields a slight decrease the death of neurons, and
anti-Aβ drug yields a slight decrease in the aggregation of

Aβ over 10 years period, while the benefits from injection
of TGF-β and MCP-1 inhibitor drugs are negligible. This
suggests that clinical trials consider combination therapy
with TNF-α and anti-Aβ drugs.
We note that Fig. 1 does not display neurites: the pro-

jections of axons and dendrites from the body of neurons.
It is known that the aggregations of Aβ mediate rapid
disruption of synaptic plasticity and memory [36–39].
Thus the progression of AD in terms of reduction in den-
dritic complexity and synaptic dysfunction will not be
considered in the present paper.
We conclude the Introduction by mentioning earlier

mathematical models which deal with some aspects of
AD: Aβ polymerization [40], Aβ plaque formation and the
role of prions interacting with Aβ [41, 42], linear cross-
talk among brain cells and Aβ [43], and the influence of
SORLA on AD progression [44, 45].

Methods
Mathematical model
Model’s variables
The mathematical model is based on Fig. 1 and is repre-
sented by a system of partial differential equations. Table 1
lists the variables used in the model.

Equations for A β

The amyloid-β within neurons, Ai
β , are constitutively

released from APP at a rate λiβ and are degraded at a
rate dAi

β
. Under reactive oxidative stress, R, Ai

β is overpro-
duced. Hence the equation for Ai

β is given by

∂Ai
β

∂t
=

⎛
⎜⎜⎜⎝λiβ(1 + R)︸ ︷︷ ︸

production

−dAi
β
Ai

β︸ ︷︷ ︸
degradation

⎞
⎟⎟⎟⎠

N
N0

, (1)

whereN0 is the reference density of the neuron cells in the
brain.
The extracellular amyloid-β peptides satisfy the follow-

ing equation:

∂Ao
β

∂t
= Ai

β

∣∣∣∣
∂N
∂t

∣∣∣∣ + λN
N
N0

+ λA
A
A0︸ ︷︷ ︸

production

−
(
dAo

βM̂

(
M̂1 + θM̂2

)
+ dAo

βM (M1 + θM2)
) Ao

β

Ao
β + K̄Ao

β︸ ︷︷ ︸
clearance

,

(2)

where K̄Ao
β
is a Michaelis-Menten coefficient. Neurons die

at a rate ∂N
∂t , thereby releasing their Ai

β . Hence they con-
tribute Ai

β

∣∣ ∂N
∂t

∣∣ to the growth rate of Ao
β , which is the first

term on the right-hand side of Eq. (2). The second term on
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(a)

(b)

Fig. 1 Schematic network in AD: a Amyloid precurser protein (APP) sheds Amyloid β peptides. ROS promotes abnormal production of Aβ [5, 6],
which activates GSK-3 [4, 6, 8]. Activated GSK-3 mediates hyperphosphrylation of tau proteins [4, 6], which results in the formation of NFTs [10] and
destruction of microtubules [4, 10], leading to neuron death. b Astrocytes are activated by Aoβ [10, 16] and TNF-α [14, 15], and they produce MCP-1
[17–19], which attracts macrophages into the tissue [17, 19]. NFT activates microglias [10, 13, 15]. Activated proinflammatory microglias and
microphages produce TNF-α and other proinflammatory cytokines [20, 22, 23], while anti-inflammatory microglias and macrophages produce IL-10
and other anti-inflammatory cytokines [20, 22, 23]. Dead neurons release Aβ and NFTs, and soluble Aβ oligomers activate microglia [11, 12].
Activated astrocytes secrete Aβ [16]. Aβ deposit is reduced through endocytosis by microglia and macrophages [12, 20]

the right-hand side of Eq. (2) represents Aβ constitutively
released from APP [5], and the third term accounts for Aβ

released by activated astrocytes [16]; A0 is the reference
density of the astrocyte cells in the brain.A0

β is cleared pri-
marily by peripheral macrophages M̂1 and M̂2, but also by
activated microglias M1 and M2, so dAo

βM̂
> dAo

βM [21],

and M̂1 M1 are more effective in clearing Ao
β than M̂2 and

M2 [46, 47] so 0 ≤ θ < 1. APP on live neurons shed
Aβ peptides both inside the neurons (as Ai

β ) and outside

the neurons (as Ao
β ). We assume that most Ao

β are pro-
duced from dead neurons. Hence, in Eq. (2), we neglected
the production of Ao

β by live neurons. We also assumed
that ROS increases primarily the Aβ that are within live
neurons, and thus neglected the increase of Ao

β by ROS.

Equation for τ
Tau protein is constitutively produced at some rate
λτ0. We assume that when Ai

β production exceeds a
threshold Ai0

β , GSK-3 becomes activated and it mediates
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Table 1 The variables of the model; concentration and densities are in units of g/cm3 for cells and g/ml for cytokines

ROS (R): Reactive oxygen species GSK-3 (G): Glycogen synthase kinase-type 3

Aiβ : Amyloid β inside neurons Aoβ : Amyloid β outside neurons

NFT (Fi): Neuronfibrillary tangle inside neurons NFT (Fo): Neuronfibrillary tangle outside neurons

APP (AP): Amyloid precursor protein AβO (AO): Amyloid β oligomer (soluble)

TNF-α (Tα ): Tumor necrosis factor alpha TGF-β (Tβ ): Transforming growth factor beta

IL-10 (I10): Interleukin 10 P: MCP-1

M1: Proinflammatory microglias M2: Anti-inflammatory microglias

MG (MG): Microglias N: Live neurons

A : Astrocytes Nd : Dead neurons

M̂1 Peripheral proinflammatory macrophages M̂2: Peripheral anti-inflammatory macrophages

τ hyperphosphorylated tau protein H High mobility group box 1 (HMGB1)

hyperphosphorylation of tau. In steady state, the differ-
ence Ai

β −Ai0
β is proportional to R. Hence the equation for

tau is given by:

∂τ

∂t
=

⎛
⎜⎝λτ0 + λτR︸ ︷︷ ︸

production

−dτ τ︸ ︷︷ ︸
degradation

⎞
⎟⎠ N

N0
. (3)

We assume that initially we already have a disease
state. Thus, in particular, the tau proteins are already
hyperphophorylated and ROS induces increases in the
production of these proteins.

Equations for NFT
TheNFTs in neurons (Fi) are formed from the hyperphos-
phorylated tau proteins [4, 6–9], and they are released to
the extraceullar space (and are then labeled F0) when the
neurons die [4, 10]. Hence,

∂Fi
∂t

=
⎛
⎜⎝ λFτ︸︷︷︸

production

−dFiFi︸ ︷︷ ︸
degradation

⎞
⎟⎠ N

N0
, (4)

∂Fo
∂t

= Fi
∣∣∣∣
∂N
∂t

∣∣∣∣
︸ ︷︷ ︸
production

−dFOFo︸ ︷︷ ︸
degradation

. (5)

Equation for neurons
Hyberphosphorated tau proteins, forming neurofibril-
lary tangles, cause microtubles depolymerization and
destruction, resulting in neuron death [4, 6–9]. Neuron
death is also caused by stress from proinflamma-
tory cytokines which is, however, resisted by anti-
inflammatory cytokines [20, 22, 23]. For simplicity we
represent all the proinflammatory cytokines by TNF-α
and all the anti-inflammatory cytokines by IL-10. Hence
the equation for N takes the following form:

∂N
∂t

= −dNF
Fi

Fi + KFi
N − dNT

Tα

Tα + KTα

1
1 + γ I10/KI10

N
︸ ︷︷ ︸

death

,

(6)

where the death rates of N caused by Fi and Tα are
assumed to depend on their saturation levels.

Equation for astrocytes
Astrocytes are activated primarily by extracellular TNF-α
[14, 15], but also by Ao

β [10, 16], so that

∂A
∂t

= λAAo
β
Ao

β + λATαTα︸ ︷︷ ︸
production

−dAA︸ ︷︷ ︸
death

. (7)

Equation for dead neurons
The equation for dead neurons, Nd, is given by

∂Nd
∂t

= dNF
Fi

Fi + KFi
N + dNT

Tα

Tα + KTα

1
1 + γ I10/KI10

N
︸ ︷︷ ︸

production

−dNdM(M1+M2)
Nd

Nd+K̄Nd︸ ︷︷ ︸
clearance by microglia

−dNdM̂

(
M̂1+M̂2

) Nd

Nd+K̄Nd︸ ︷︷ ︸
clearance by macrophages

,

(8)

where K̄Nd is a Michaelis-Menten coefficient. The first
two terms on the right-hand side arise from the death of
N cells. The last two terms account for the clearance ofNd
by microglias and peripheral macrophages [48].

Equation for AβO
The AβO are soluble Aβ oligomers and they can diffuse
throughout the brain tissue [49, 50]. Their density AO
satisfies the equation:

∂AO
∂t

− DAO	AO = λAOA
o
β︸ ︷︷ ︸

production

−dAOAO︸ ︷︷ ︸
degradation

, (9)
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where λAO is the rate by which theAO are formed from the
extracellular amyloid β peptides, and DAO	AO accounts
for the diffusion of AO.

Equation for HMGB-1
In general, when cell death occurs through necrosis, dying
cells release HMGB-1 [51]. In AD, HMGB-1 is produced
by dying neurons [52–54]. Hence,

∂H
∂t

− DH	H = λHNd︸ ︷︷ ︸
production

−dHH︸ ︷︷ ︸
degradation

. (10)

Equations for activatedmicroglias
Activated microglias have two phenotypes: proinflam-
matory M1 and anti-inflammatory M2. They satisfy the
following equations:

∂M1
∂t

+∇ · (M1∇H) = M0
G

[
λMF

Fo
Fo+KFo

+ λMA
AO

AO+KAO

]
βε1

βε1+ε2︸ ︷︷ ︸
production

−λM1Tβ

Tβ

Tβ + KTβ

M1

︸ ︷︷ ︸
M1→M2

−dM1M1︸ ︷︷ ︸
death

,

(11)

∂M2
∂t

+ ∇ · (M2∇H) = M0
G

[
λMF

Fo
Fo+KFo

+λMA
AO

AO+KAO

]
ε2

βε1+ε2︸ ︷︷ ︸
production

+λM1Tβ

Tβ

Tβ + KTβ

M1

︸ ︷︷ ︸
M1→M2

−dM2M2︸ ︷︷ ︸
death

,

(12)

where ε1 = Tα

Tα+KTα
and ε2 = I10

I10+KI10
.

Microglias can travel in the brain [55]. Activated
microglias are chemoattracted to dead neurons [10, 13, 15],
more precisely, to the cytokines HMGB-1 produced by
Nd, and this is represented by the second term of the
left-hand side of Eqs. (11), (12). Microglias are acti-
vated by extracelluar NFTs [10, 13, 15], and by soluble
oligomers AO [11, 12]. They become of M1 phenotype
under proinflammatory signals from TNF-α, and of M2
phenotype under anti-inflammatory signals from IL-10.
These facts are expressed by the first term on the right-
hand sides of Eqs. (11), (12); βε1

βε1+ε2
is the ratio by which

the activated microglias become M1 macrophages, and
ε2

βε1+ε2
is the ratio by which activated microglias become

M2 macrophages. The parameter β reflects the ratio
of proinflammatory/anti-inflammatory environment, as
determined by the relative ‘strength’ of Tα v.s. I10.
In addition, there is a transition M1 → M2 under the

TGF-β signaling [32], which is accounted by the second
term on the right-hand side of these equations.

Equations formacrophages
Peripheral macrophages M̂ are differentiated from mono-
cytes which migrate through the blood vessels. They
satisfy a flux condition

∂M̂
∂n

+ α̃(P)(M̂ − M0) = 0

on the boundary of the blood vessels, where n is the
outward normal, M0 is the density of the monocytes
in the brain capillaries, and α̃(P) is a function which
depends on the concentration of MCP-1. By averaging
these fluxes from blood vessels, we can represent (as in
[56]) the immigration of M̂ macrophages into the brain
tissue by a term α̃(P)(M0 − M̂). We assume that the
incoming macrophages divide into M̂1 and M̂2 phenotype
depending on the relative concentrations of TNF-α and
IL-10 [47]. Macrophages M̂1 can also change phenotype
to M̂2 macrophages under signaling by TGF-β . We finally
note that because of the blood-brain barrier (BBB) we
do not include diffusion of peripheral macrophages, but
we do include chemotaxis by amyloid-β plaques or, more
specifically, by the soluble AO [17–19]. Hence peripheral
macrophages satisfy the following equations:

∂M̂1
∂t

+∇ · (M̂1∇AO) = α(P)(M0−M̂)
βε1

βε1+ε2︸ ︷︷ ︸
production

−λM̂1Tβ

Tβ

Tβ +KTβ

M̂1

︸ ︷︷ ︸
M1→M2

−dM̂1
M̂1︸ ︷︷ ︸

death

,

(13)

∂M̂2
∂t

+∇ · (M̂2∇AO)=α(P)(M0 − M̂)
ε2

βε1 + ε2︸ ︷︷ ︸
production

+λM̂1Tβ

Tβ

Tβ +KTβ

M̂1

︸ ︷︷ ︸
M1→M2

−dM̂2
M̂2︸ ︷︷ ︸

death

,

(14)

where M̂ = M̂1 + M̂2 and α(P) = α P
P+KP

[56].

Equations for TGF-β , TNF-α MCP-1 and IL-10
Tβ and IL-10 are produced by M2 microglia and M̂2
macrophages. TNF-α is produced by proinflammatory
macrophagesM1 and M̂1. Hence the equations for Tβ , Tα

and I10 have the following form:

∂Tβ

∂t
− DTβ

	Tβ = λTβMM2 + λTβM̂M̂2︸ ︷︷ ︸
production

−dTβ
Tβ︸ ︷︷ ︸

degradation

, (15)

∂I10
∂t

− DI10	I10 = λI10MM2 + λI10M̂M̂2︸ ︷︷ ︸
production

−dI10 I10︸ ︷︷ ︸
degradation

, (16)

∂Tα

∂t
− DTα	Tα = λTαM1M1 + λTαM̂1

M̂1︸ ︷︷ ︸
production

−dTαTα︸ ︷︷ ︸
degradation

. (17)
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MCP-1 is produced by activated astrocytes [17–19] and
by microglias [12], which are assumed to be ofM2 pheno-
type. Hence

∂P
∂t

− DP	P = λPAA + λPM2M2︸ ︷︷ ︸
production

−dPP︸ ︷︷ ︸
degradation

. (18)

The estimates of parameters in Eqs. (1)–(18) are given
in “Appendix".

Results and discussions
We simulate the model (1)-(18) in a rectangular domain
� = {(x, y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}. We assume that

AO,H,Tβ , I10,Tα and P satisfy periodic boundary conditions.

(19)

We take initial values, for each variable X, to be below
(or above) the expected steady state for X, if X is expected
to grow (or decrease) with the progression of the disease.
A specific choice is given below, but the simulations do
not change, after a short time, with other choices:

Ai
β =10−6 g/ml,Ao

β =10−8 g/ml, τ =1.37×10−10 g/ml, Fi =3.36×10−10 g/ml,

Fo =3.36×10−11 g/ml,N=0.14 g/ml,A=0.14 g/ml,M1 =M2 =0.02 g/ml,

M̂1 =M̂2 =Nd =0 g/ml,H = 1.3×10−11g/ml,Tβ =10−6g/ml,

Tα =2×10−5g/ml, I10 =10−5 g/ml,P=5×10−9g/ml.

(20)

We also prescribe the value of ROS in Eqs. (1), (3) by

R = R(t) =
{
R0

t
100 0 ≤ t ≤ 100
R0 t > 100 . (21)

Figure 2 shows the average density of all the 18 vari-
ables of the model over a period of 10 years. We first
observe that, for all the species that tend to a steady
state in Fig. 2, the steady states are approximately the
same as those that we assumed in estimating some of
the model parameters. Thus the steady state values of
τ , Fi,H ,M1,M2, M̂1, M̂2,Tβ ,Tα and I10 are approximately
equal to the values assumed in “Appendix”. We conclude
that estimates of the parameters which were based on
steady state assumptions on macrophages, microglias and
the half-saturation parameters are consistent with the
simulation results.
We next observe that neurons are dying at approx-

imately the rate of 5% a year, which was one of our
important assumptions that was based on clinical data.
We also note that, as the disease progresses, the plaque of
Aβ peptides, Ao

β , and the soluble Aβ oligomers, AO, are
increasing; Ao

β reaches the level of 7×10−6 g/ml, in agree-
ment with clinical data [57], and the assumed average
of AO concentration, KAO , is indeed in good approxima-
tion to the average of the profile of AO in Fig. 2. The
assumed average of the Fo concentration, KFo , is also in

Fig. 2 Average concentration of cytokines and average density of cells. All the parameters are as in Tables 2 and 3
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good agreement with the average of the profile of Fo in
Fig. 2.
We note that Nd nearly stabilizes over time, at the level

assumed in “Appendix," which means that, over time,
macrophages and microglias clear debris of dead cells at
nearly the same rate at which neurons are dying. Hence∣∣∣ ∂Nd

∂t

∣∣∣ becomes very small over time, resulting in signifi-
cant decline in extracellular NFT, while intracellular NFTs
(Fi) maintain a comparatively high level.
We finally note that the density of activated astrocytes is

slightly increasing in agreement with a mouse model [58]
which reports that astrocytes become increasingly promi-
nent with the progression of the disease. The increase
in A causes P also to increase, and the average of P is
approximately equal to our estimate of KP in S.I.

Anti-Alzheimer drugs
Until now, all clinical trials aimed to develop drugs that
can cure AD have failed. There are currently no drugs
that can prevent, stop or even delay the progression of
Alzheimer’s disease, and there are many ongoing clinical
trials. According to the 2016 Alzheimer’s Disease Facts
and Figures, and the National Institute of Aging, if no cure
is found, by 2050 the number of alzheimer’s patients in the
U.S. will reach 15 millions and the cost of caring for them
will exceed $ 1 trillion annually.
Avenues for AD therapies include prevention of build

up of plaque (anti-amyloid drugs), preventing tau aggre-
gation, and reducing inflammation. Clinical trials are con-
cerned with both safety and efficacy. Here we shall use our
mathematical model to conduct in silico trials with several
drugs, addressing only the question of efficacy.
Treatment for AD causes changes in the densities of

cells and concentrations of cytokines. In order to deter-
mine the efficacy of a drug, we should observe (i) to what
extend it decreases the death rate of N, since slowing the
death of neurons will improve cognition of patients; and
(ii) to what extend it decreases Ao

β , since Aβ aggrega-
tion mediates rapid dysfunction of synaptic plasticity and
dendritic channels thereby causing memory loss [36–39].

TNF-α inhibitor
Since TNF-α is implicated in generating neurotoxicity
which leads to death of neurons, TNF-α inhibitor (etan-
ercept) has been considered as a drug for Alzheimer’s
patients [59]. In 2015 clinical trials phase 2 [60] the drug
has shown some favorable trends but with “no statistically
significant changes in cognition.” Since there were no seri-
ous adverse events, it was suggested that a larger, broader
group needs to be tested before recommending etanercept
for use for general Alzheimer patients.
We shall apply our model to determine how this TNF-

α inhibitor affects AD patients. We use the following
procedure:

1. Run the model for 300 days in order to ensure that
AD has been diagnosed in patients;

2. Apply continuous treatment by the drug from day
300 until the end of 10 years.

During treatment, the effect of the drug is to replace
Eq. (17) for TNF-α by the equation
∂Tα

∂t
− DTα	Tα = λTαM1M1 + λTαM̂1

M̂1−dTαTα − fTα ,

(22)

where f is proportional to the amount of etanercept. We
note that since etanercept is a soluble TNF receptor fusion
protein, it stabilizes TNF-α [61] and thus TNF-α is dimin-
ished at rate fTα . The red profiles in Fig. 3 show the
result of the treatment with f = 10dTα , compared to no
treatment.

TGF-β injection
TGF-β is an anti-inflammatory cytokine which induces
phenotype change from proinflammatory to anti-
inflammatory macrophages. It was suggested that TGF-β
mitigates AD pathology [29–34].
We note that the effect of Tβ injection is to decreaseM1

and M̂1 (see Eqs. (11), (13)), which results in a decrease
in Tα (by Eq. (17)) and hence in a decrease in neuronal
death rate. To model the treatment by injection of TGF-β
we replace Eq. (15) for Tβ by the equation

∂Tβ

∂t
− DTβ

	Tβ = λTβMM2 + λTβM̂M̂2−dTβ
Tβ + g,

(23)

where g is proportional to the amount of injected TGF-
β . In steady state, Tβ maintains the level of KTβ

, while its
degradation rate is dTβ

. Hence the source of Tβ in steady
state is dTβ

Tβ . We take g to be 10 times this source, that
is g = 10dTβ

KTβ
. We then follow the same treatment

procedure for TNF-α inhibitor. The light-blue profiles in
Fig. 3 show the results of the treatment, compared to no
treatment.

Anti-Aβ drugs
There are several drugs in Phase 3 clinical trials that aim to
reduce the effect of Aβ aggregation [62]. Among them is
aducanumab, which is thought to be microglia-mediated
phagocytosis and clearance of Aβ [63, 64]. In our model,
this drug will cause a decrease in the concentration of
soluble Ao

β , by replacing Eq. (2) by the equation

∂Ao
β

∂t
= Ai

β

∣∣∣∣
∂N
∂t

∣∣∣∣ + λN
N
N0

+ λA
A
A0

−
(
dAo

βM̂
(M̂1+ θM̂2) + dAo

βM(M1 + θM2)(1+h)
) Ao

β

Ao
β + K̄Ao

β

,

(24)
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Fig. 3 Anti-TNF-α drug (red), etanercept, with f = 10dTα ; TGF-β injection. (light-blue) with g = 10dTβ KTβ . Dark-blue color corresponds to no
treatment, and where several profiles nearly coincide, they are all colored by light-blue. All the other parameters are as in Tables 2 and 3

where h is proportional to the amount of the dozing level;
we take h = 10.
Figure 4 shows the efficacy of several drugs in terms

of N and Ao
β . The lowest curve in Fig. 4a, and the high-

est curve in Fig. 4b, correspond to the case where the
curves of no treatment and several other drugs coincide;
these drugs have negligible efficacy. Following the same
treatment procedure as in the case of TNF-α inhibitor,
Fig. 4 shows no efficacy of aducanumab in terms of N
but significant efficacy in terms of Ao

β in comparison to
no treatment and to treatments by TNF-α inhibitor and
TGF-β injection.

MCP-1 inhibitor
Bindarit was shown to inhibit CCL2 (MCP-1) in brain
tissue [65]. Hence it decreases M̂1 (by Eq. (13)), which
results in a decrease in Tα (by Eq. (17)) and thus also
in a decrease in neuronal death rate. Bindarit was also
reported to inhibit Aβ-induced neuronal death in vitro
[66]. Hence it has a therapeutic potential in the treat-
ment of neuroninflammatory/neurodegenerative diseases
like AD [66]. We can conduct in silico trial with bindarit
by revising Eq. (18) for P, replacing it with the equation

∂P
∂t

− DP	P = λPAA + λPM2M2−dPP(1 + k) (25)

with k = 10 Following the treatment procedure as in the
case of of TNF-α inhibitor, Fig. 4 shows no efficacy of the
drug in terms ofN and Ao

β in comparison to no treatment.

Methylthiomnium chloride (MTC) is the first identified
tau aggregation inhibitor currently in Phase 3 trial [27]. In
ourmodel the drug will cause a decrease in the production
of tau proteins and in their ability to turn into NFT. We
model this by multiplying the production terms λτ0 and
λτ by 1/10. Following the procedure as in case of TNF-
α inhibitor, we found that the drug has almost negligible
efficacy (not shown here).

Combination therapy
The results of Fig. 4 suggest that a combination ther-
apy with etanercept (TNF-α inhibitor) and aducanumab
(anti-Aβ drug), under the same ’10-fold’ amount, could
both slow the death rate of neurons and decrease the
growth of Aβ in a significant way. Figure 5 shows
the dynamics of N and Ao

β under such combination
of drugs with different proportions of fold numbers:
(etanercept,aducanumab)=(0,0) (no drugs), (10,5), (20,10),
(30,15), (40,20) and (50,25). The reduction in the death of
neurons, after 10 years, compared to the case of no drugs,
is 3.8, 5.2, 6.4, 7.9 and 9.2%, respectively, and the respec-
tive reduction in the concentration of Aβ is 21, 32.2, 43.6,
53.9 and 64.1%.
We next consider combined therapy for any value of

etanercept (f ) and aducanumab (h). We define the N-
efficacy of (f, h), EN (f , h), to be

EN (f , h) = N(f , h) − N(0, 0)
N(0, 0)

,
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(a) (b)

Fig. 4 Treatment with etanercept (decreasing Tα degradation rate by 10 fold), TGF-β injection (increasing its constitutive source by 10 fold),
aducanumab (increasing the clearance rate of Aoβ by 10 fold), and bindarit (increasing MCP-1 natural degradation by 10 fold). In a, the profiles of no
treatment, bindarit and aducanumab coincide. In b, no treatment and bindarit coincide. The lowest curve in Fig. 4a, and the highest curve in Fig. 4b
, correspond to the case where the curves of no treatment and several other drugs coincide; these drugs have negligible efficacy

where the density N is computed at the end of 10 years.
Similarly we define the anti-Ao

β efficacy by

EAβ
(f , h) = Ao

β(0, 0) − Ao
β(f , h)

Ao
β(0, 0)

where the Ao
β concentration is computed also at the end of

10 years.
Figure 6 is an efficacy map of the combined therapy with

f in range of (0,50) and h in the range of (0,25). For any pair
(f,h) the color columns in Fig. 6a and 6b show the efficacy
for N and anti-Ao

β .
We see that the efficacy of the combined therapy is very

small if f < 20 or h < 10, and it increases sharply with f
and h in the region where {40 < f < 50, 20 < h < 25}.
From Fig. 6 we see that anti-Aβ antibody decreases

the external concentration of Aβ (Ao
β ) with efficacy less

than 0.5 (h=20, f=0). Higher efficacy requires Tα inhibitor
(h=20, f=20) which will protect neuron from death and

prevent astrocytes activation, and thereby reduceAo
β . This

result can be explained by our assumptions in Eq. (2)
where we neglected the production of Ao

β by live neurons
and the increase of Ao

β by ROS.
The PK/PD literature employs the concept of combi-

nation index (φ) in order to assess the level of synergy
between two drugs [67]. This concept was used in sim-
ulations of several diseases (e.g. cancer and microbial
diseases) in order to determine optimal dosage regimens
[67–69]. Since in our AD model it is not clear how to
define φ, and no data are available to evaluate φ, we shall,
instead, introduce the following concept, for example in
the case of etanercept and aducanumab:
We say that these two drugs at concentrations f and g

have positive synergy with respect to N if EN (f , g) >

EN (2f , 0) and EN (f , g) > EN (0, 2g). We accordingly define
the synergy index σN = σN (f , g) by

σN = EN (f , g)/max{EN (2f , 0),EN (0, 2g)}.

Fig. 5 Combined treatment with etanercept fold number f and aducanumab fold number h for several values of (f, h)
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Fig. 6 Efficacy maps. Etanercept (with fold number f ) varies along the
horizontal axis, and aducanumab (with fold number h) varies along
the vertical axis. The column vector indicates the efficacy of treatment
for any pair (f,h): a N-efficacy; b Anti-Aoβ efficacy

Thus, σN > 1 means positive synergy and σN < 1
means negative synergy. The above definition depends on
the doses f, g. If σN is large then the combination therapy
at total amount f + g is much more effective than a single
therapy, at the total same amount, in reducing the death
rate of N. If σN < 1 then a single drug is preferable. Sim-
ilarly one can define the synergy index σAo

β
with respect

to Ao
β . Figure 7 shows the synergy index σN for (f, g)

in the range 0 < f < 50 and 0 < g < 25. We see
that there is a positive synergy between etanercept (f ) and
aducanumab (h). Furthermore, given a total amount A of
the combined drugs, so that f+h=A, the synergy increases
as f/g increases. This suggests that in an optimal regimen
f should be significantly larger than h, provided negative
side-effects are discounted.
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Fig. 7 Synergy map for combination therapy with etanercept (f ) and
aducanumab (h)

The synergy map for σAo
β
is similar to that of σN (not

shown here), and so the synergy increases when f/g is
increased.
From Fig. 5 we see that although the amyloid level

are controlled, cell death levels do not decrease signifi-
cantly. This may suggest that other combinations of drugs
may target complimentary pathways more efficiently. For
example, it was suggested in [70] that Amyloid β and tau
combine to induce neuron into cell cycle, which leads to
cell death; accordingly, one could explore using anti-Aβ

and anti tau aggregation in combination therapy.

Sensitivity analysis
Sensitivity analysis on the model parameters can sup-
port the robustness of the simulation results. But it can
also suggest what drugs do not work and what drugs are
more likely to work. We conducted sensitivity analysis on
parameters associated with production and removal rates
of Ao

β , death rates of N, and production rates of TNF-α,
TGF-β and MCP-1:

λN , λA, dNF , dNT , (λTαM1 , λTαM̂1
)γ , (λTβM, λTβM̂)

× δ, (dAo
βM, (λPA, λPM2)ξ , dAo

βM̂
)ε,

where we varied λN , λA, dNF , dNT between 1
2 and twice

their value in Tables 2 and 3, and varied γ , δ, ξ , ε between
1
2 and 2.
Following the sensitivity analysis method described in

[71], we performed Latin hypercube sampling and gener-
ated 2000 samples to calculate the partial rank correlation
coefficients (PRCC) and p-values with respect to the den-
sity of N and with respect to the concentration of Ao

β at
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Table 2 Parameters’ description and value

Parameter Description Value

DAO Diffusion coefficient of AβO 4.32 × 10−2 cm2 day−1 estimated

DH Diffusion coefficient of HMGB-1 8.11 × 10−2 cm2 day−1 estimated

DTα Diffusion coefficient for TNF-α 6.55 × 10−2 cm2 day−1 estimated

DTβ Diffusion coefficient of TGF-β 6.55 × 10−2 cm2 day−1 estimated

DI10 Diffusion coefficient of IL-10 6.04 × 10−2 cm2 day−1 estimated

DP Diffusion coefficient of MCP-1 1.2 × 10−1 cm2 day−1 estimated

λiβ Production rate of Aiβ 9.51 × 10−6 g/ml/day estimated

λN Production rate of Aoβ by neuron 8 × 10−9 g/ml/day estimated

λA Production rate of Aoβ by astrocytes 8 × 10−10 g/ml/day estimated

λτ0 Production rate of tau proteins in health 8.1 × 10−11 g/ml/day estimated

λτ Production rate of tau proteins by ROS 1.35 × 10−11 g/ml estimated

λF Production rate of NFT by tau 1.662 × 10−3/day estimated

λATα Production/activation rate of astrocytes by TNF-α 1.54/day estimated

λAAoβ
Production/activation rate of astrocytes by Aoβ 1.793/day estimated

λAO Production rate of AβO 5 × 10−2/day estimated

λH Production rate of HMGB-1 3 × 10−5/day estimated

λMF Production/activation rate of microglias by NFT 2 × 10−2/day estimated

λMA Production/activation rate of microglias by astrocytes 2.3 × 10−3/day estimated

λM1Tβ Rate ofM1 → M2 6 × 10−3/day estimated

λM̂1Tβ
Rate of M̂1 → M̂2 6 × 10−4/day estimated

λTβM Production rate of TGF-β by M 1.5 × 10−2 day−1 [56, 99]

λTβ M̂
Production rate of TGF-β by M̂ 1.5 × 10−2 day−1 [56, 99]

λTαM1 Production rate of TNF-α byM1 3 × 10−2 day−1 estimated

λTα M̂1
Production rate of TNF-α by M̂1 3 × 10−2 day−1 estimated

λI10M2 Production rate of IL-10 byM2 6.67 × 10−3 day−1 [47, 90]

λI10M̂2
Production rate of IL-10 by M̂2 6.67 × 10−3 day−1 [47, 90]

λPA Production rate of MCP-1 by astrocytes 6.6 × 10−8 day−1 estimated

λPM2 Production rate of MCP-1 byM2 1.32 × 10−7 day−1 estimated

θ M2/M1 effectivity in clearance of Aoβ 0.9 estimated

α Flux rate of macrophages 5 estimated

β Proinflammatory/anti-inflammatory ratio 10 estimated

γ I10 inhibition ratio 1 estimated

time t=10 years. The results are shown in Fig. 8. All the
p-values were less than 0.01. A positive PRCC (i.e. positive
correlation) for N means that an increase in the param-
eter will increase the number of live neurons. A negative
PRCC for N means that an increase in the parameter will
decrease the number of live neurons. Similarly, a posi-
tive (negative) PRCC for Ao

β means that an increase in the
parameter will increase (decrease) the concentration of
Ao

β . Thus, for example, we see that dNF and dNT are nega-
tively correlated to N and positively correlated to Ao

β . This
is not surprising since, with an increase in dNF and dNT ,
more neurons die (so N decreases) and as a result more

Aβ emerge from the increasingly dying neurons, thus rais-
ing the concentration of Ao

β . The fact that the correlation
coefficients of dNT are significantly larger than the cor-
relation coefficients of dNF , suggests that a drug which
blocks TNF-α would be more effective than a drug which
clears the Fi. The other PRCC values can also be seen to
be consistent with the model dynamics.
We observe that ε is negatively correlated to Ao

β . Indeed,
if ε is increased, more Ao

β are cleared out (by Eq. (2)). To
see how this affects N we note that if Ao

β is decreased
then AO decreases (by Eq. (9)) and correspondingly
M1 decreases (by Eq. (11)), and then Tα decreases (by



Hao and Friedman BMC Systems Biology  (2016) 10:108 Page 12 of 18

Table 3 Parameters’ description and value

Parameter Description Value

dAiβ
Degradation rate of Aiβ 9.51/day [82]

dAoβ Degradation rate of Aoβ 9.51/day [82]

dAoβM Clearance rate of Aoβ by microglia 2 × 10−3/day estimated

dAoβ M̂
Clearance rate of Aoβ by macrophages 10−2/day estimated

dτ Degradation rate of tau proteins 0.277/day [88]

dFi Degradation rate of intracellular NFT 2.77 × 10−3/day estimated

dFo Degradation rate of extracellular NFT 2.77 × 10−4/day estimated

dN Death rate of neurons 1.9 × 10−4/day estimated

dNF Death rate of neurons by NFTs 3.4 × 10−4/day estimated

dNT Death rate of neurons by TNF-α 1.7 × 10−4/day estimated

dNdM Clearance rate of dead neurons by M 0.06/day estimated

dNdM̂ Clearance rate of dead neurons by M̂ 0.02/day estimated

dA Death rate of astrocytes 1.2 × 10−3 day−1 estimated

dM1 Death rate ofM1 microglias 0.015 day−1 [47, 74]

dM2 Death rate ofM2 microglias 0.015 day−1 [47, 74]

dM̂1
Death rate ofM1 macrophages 0.015 day−1 [47, 74]

dM̂2
Death rate ofM2 macrophages 0.015 day−1 [47, 74]

dAO Degradation rate of AβO 0.951/day estimated

dH Degradation rate of HMGB-1 58.71/day [95]

dTα Degradation rate of TNF-α 55.45 day−1 [47, 74]

dTβ Degradation rate of TGF-β 3.33 × 102 day−1 [56, 99]

dI10 Degradation rate of IL-10 16.64 day−1 [47]

dP Degradation rate of MCP-1 1.73 day−1[47, 74]

R0 Initial inflammation by ROS 6 estimated

M0 Monocytes concentration in blood 5 × 10−2 estimated

N0 Reference density of neuron 0.14 g/cm3 estimated

M0
G Source of microglia 0.047 g/cm3 estimated

A0 Reference density of astrocytes 0.14 g/cm3 estimated

K̄Aoβ Michaelis-Mention coefficient for Aoβ 7 × 10−3 g/cm3 estimated

K̄Nd Michaelis-Mention coefficient for Nd 10−3 g/ml estimated

KI10 Half-saturation of IL-10 2.5 × 10−6 g/cm3 estimated

KTβ Half-saturation of TGF-β 2.5 × 10−7 g/ml [90]

KM Half-saturation of microglias 0.047 g/ml estimated

KM̂ Half-saturation of macrophages 0.047 g/ml estimated

KM1 Half-saturation ofM1 microglias 0.03 g/ml estimated

KM2 Half-saturation ofM2 microglias 0.017 g/ml estimated

KM̂1
Half-saturation of M̂1 macrophages 0.04 g/ml estimated

KM̂2
Half-saturation of M̂2 macrophages 0.007 g/ml estimated

KFi Half-saturation of intracellular NFTs 3.36 × 10−10 g/ml [89]

KFo Average of extracellular NFTs 2.58 × 10−11 g/ml estimated

KAO Average of of AβO 1 × 10−7 g/ml estimated

KP Half-saturation of MCP-1 6 × 10−9 g/ml estimated

KTα Half-saturation of TNF-α 4 × 10−5 g/ml estimated
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Fig. 8 The PRCC values of parameter for sensitivity analysis

Eq. (17)); so we may expect N to increase, but perhaps
not much, since we have ignored other indirect inter-
actions from the model. From Fig. 8 we see that ε is
indeed positively correlated to N but the correlation is
small. The correlation levels of ε with respect to N and Ao

β

suggest that an anti-Aβ drug, like aducanumab, will have
some benefits in reducing Amyloid β , but little benefit in
reducing death of neurons. This is also seen from Fig. 4.

Conclusion
AD is an irreversible progressive neuroninflamma-
tory/neurodegenerative disease that destroysmemory and
cognitive skills. Currently there is no drug that can cure,
stop, or even slow the progression of the disease. Life
expectancy at diagnosis is 10 years, and, at death, 50%
of the brain neurons have already died. AD patients
show abnormal aggregation of beta-amyloids (Ao

β ) and
neurofibrillary tangles (NFTs) of hyperphosphorylated
tau proteins. NFTs destroy microtubles in neurons, which
results in neurons death. Soluble Ao

β oligomers acti-
vate microglias (the resident macrophages in the brain),
thereby initiating inflammatory response. Additionally,
peripheral macrophages, responding to cue from MCP-
1 produced by astrocytes, are attracted to the brain and
increase the inflammatory environment, which is harmful
to neurons.
Figure 1 is a schematic network of AD: it includes

neurons, astrocytes, microglias, peripheral macrophages,
β-amyloids, tau proteins, and several cytokines involved
in the cross-talk among the cells. In the present paper, we
developed a mathematical model of AD based on Fig. 1.
The model can be used to explore the efficacy of drugs
that may slow the progress of the disease. We conducted

several in silico trials with several drugs: etanercept (TNF-
α inhibitor), injection of TGF-β , aducanumab (Anti-Aβ

drug) and bindarit (MCP-1 inhibitor). We found that at
’10-fold’ level, etanercept has the largest efficacy in slow-
ing death of neurons, while aducanumab has the largest
efficacy in reducing the aggregation of Ao

β , although these
efficacies were quite small. Based on these findings we
propose that clinical trials should use a combination ther-
apy with etanercept (f ) and aducanumab (h). In Fig. 6 we
developed efficacymaps for any combination therapy with
0 < f < 50 and 0 < h < 25, and we used this map to
derive, in Fig. 7, a synergy map for σN = σN (f , g). Figure 7
shows that the synergy between f and g increases if f/g
increases, while f+g is kept fixed. This suggests that in an
optimal regimen with fixed total amount, A, of the drugs,
f should be significantly larger than h. We did not con-
sider here, however, adverse side effects that are likely to
limit the amount of drugs that can be given to a patient.
When these limits become better known, one could
then proceed to determine the optimal combination of
etanercept and aducanumab for slowing the progression
of AD.
The mathematical model developed in this paper

depends on some assumptions regarding the mechanism
of interactions involving amyloid, tau and neunofilaments
in AD. There are currently not enough data to sort out
competing assumptions. Hence the conclusion of the
paper regarding combination therapy should be taken
with caution.
Our mathematical model focused on the progression of

AD in terms of neurons death and amyloid β aggregation.
But dendritic pathologies also play an important role in
the disease. Dendritic abnormalities in AD include dys-
trophic neuritides, reduction in dendritic complexity and
loss in dendritic spines [36, 37]. In particular, Aβ plaques
affect dendritic channels, and NFTmediates synaptic dys-
function [36–39]. Recent studies also begin to address
white matter degeneracy that could help identify high risk
of AD [72].

Appendix
Parameter estimation
In the sequel, in an expression of the form X

X+KX
in the

context of activation, the half-saturation parameter KX is
taken to be the steady state of the species X provided X
tends to a steady state. Hence in a steady state equation
this factor is equal to 1

2 . If X does not tend to a steady
state then the parameter KX will be taken to be the esti-
mated average of X over a period of 10 years, the average
survival time of AD patients [73]. In an expression of the
form 1

1+γX/KX
(where γ = γ (X)) in the context of inhibi-

tion, KX is again the half-saturation of X, so that in steady
state the inhibition is 1/(1 + γ ). If cells Y phagocytose
species X, then the clearing rate is proportional to Y X

X+K̄X
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where the Michaelis-Menten constant K̄X depends only
on the ‘eating capacity’ of Y, so K̄X has no relation to the
half-saturation of X.

Diffusion coefficients
The diffusion coefficient of proteins (Y ) are propor-
tional to 1/M1/3

Y , where MY is the molecular weight [74].
Accordingly, we have the following relation [75]:

DY = M1/3
V

M1/3
Y

DV ,

where MV and DV are the molecular weight and the dif-
fusion coefficient of VEGF. Since DV = 8.64 × 10−2 cm2

day−1[76],MV = 24 kDa [76],MP = 8.9 kDa [77],MTβ
=

55 kDa [78],MTα = 55 kDa [79],MI10 = 70 kDa [46], and
MH = 29 kDa [80], we get DP = 1.20 × 10−1 cm2day−1,
DTβ

= 6.55 × 10−2 cm2day−1, DTα = 6.55 × 10−2

cm2day−1, DI10 = 6.04 × 10−2 cm2day−1 and DH =
8.11 × 10−2 cm2day−1.
Molecular weight of Aβ is 24 kDa [81], so in solu-

ble state its diffusion coefficient would be 8.64 × 10−2

cm2day−1. We assume that soluble oligomer AβO has a
smaller diffusion coefficient, namely, DAO = 4.32 × 10−2

cm2day−1.

Eq. (1)
By [82], the half-life of Ai

β is 1.5–2 h in mice. Hence dAi
β

=
dAo

β
= ln2

1.75 × 24=9.51 /day. Membrane proteins APP shed
amyloid β , some end up inside the cell and some outside
the cell. We assume that in healthy steady state Ai

β = Ao
β ,

however the simulation results do not change apprecia-
bly if we take Ao

β > Ai
β . According to [57], the density

in brain-gray matter of Ao
β is approximately 1000 ng/g in

control and 7000 ng/g in AD. Hence, from the steady state
of Eq. (1) in a healthy normal case, Ai

β = 10−6 g/ml and
λiβ = dAi

β
× 10−6=9.51 × 10−6 g/ml/day. From the steady

state of Eq. (1) in AD and Eq. (21) we then get that R0 = 6.
The brain has 75% water and 60% of its dry matter is

fat. We assume that the average density of brain tissue
is 1 g/cm3. The human brain has 100 billion neurons,
and its weight is approximately 1400 g, so its volume is
approximately 1400 ml. Hence its neurons number den-
sity is 7×107 neurons/cm3. The diameter of neurons is 16
μm [83]. Accordingly, we estimate the volume of 1 neu-
ron to be 2 × 10−9 cm3, and the neurons density is then
7 × 107 × 2 × 10−9 g/cm3, that is N0 = 0.14 g/cm3.

Eq. (2)
The number of neurons is three times the number of
microglia [55], hence KM̂ = 1

3N0 = 0.047 g/ml.
By [16] an astrocyte produces much less Aβ than a

neuron, so we take λA = 1
10λN .

Microglias are the first responders to NFTs and AβO.
Peripheral macrophages arrive later, and their immune
response may perhaps exceed that of microglia, but this
is currently not known [12, 84]. We assume that in
steady state the microglias density M and the peripheral
macrophages density M̂ are equal, so that M̂ = KM̂ =
M = KM = 0.047 g/ml. Motivated by the inflam-
matory immune attack in AD [85], we assume that, in
steady state, the proinflammatory macrophages exceed
the anti-inflammatory macrophages, and that proinflam-
matory peripheral macrophages exceed the proinflamma-
torymicroglias. Thus, in steady state, M̂1 > M̂2,M1 > M2
and M̂1 > M1, and we take KM̂1

= 0.04, KM̂2
= 0.007,

KM1 = 0.03, KM2 = 0.017.
Activated microglias are poorly phagocytic for Aβ com-

pared to peripheral macrophages [6]. Accordingly we take

dAo
βM = 1

5
dAo

βM̂
.

Taking dAo
βM̂

= 10−2/day, we then have

dAo
βM = 2 × 10−3/day.

We assume that M̂1 and M1 are more effective than M̂2
andM2 in clearing Aβ , and take θ = 0.9.
We assume that survival time of patients with AD is 10

years, and that at the end-stage 50% of their neurons have
died [73]. Hence, the death rate of N is dN = ln2

10 years =
1.9 × 10−4/day.
By [57], Ao

β = 7 × 10−6 g/ml. We assume that the
clearance of Ao

β by macrophages and microglias is nearly
unlimited (i.e., it is almost linear in Ao

β ) by taking K̄Ao
β

=
103Ao

β = 7× 10−3 g/ml. To estimate λN , we first consider
the steady state of Eq. (2),

10−6
∣∣∣∣
∂N
∂t

∣∣∣∣
average

+ λN + 1
10

λN =
(
dAo

βM̂
(KM̂1

+0.9KM̂2
)+dAo

βM(KM1+0.9KM2)
) Ao

β

Ao
β +K̄Ao

β

.

To estimate the average of
∣∣ ∂N

∂t
∣∣, we use the equation

N(t) = N0e−dN t , N(0) = 0.14 g/ml,

so that∣∣∣∣
dN
dt

∣∣∣∣ = 0.14 × 1.9 × 10−4e−1.9×10−4t .

The values of
∣∣ ∂N

∂t
∣∣ for 500 < t < 1000 days vary very

little, i.e., from 1.8×10−5 g/ml/day to 1.9×10−5 g/ml/day.
We take

∣∣∣dNdt
∣∣∣ = 1.8×10−5 g/ml/day as the average of

∣∣∣dNdt
∣∣∣

over 10 years, but other choices do not affect significantly
our simulation results. We then get that λN = 4 × 10−9

g/ml/day.
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The estimate of λN was based on the steady-state
assumption in Eq. (2). However, in AD the Aβ peptides are
continuously aggregating, so that the steady state assump-
tion needs to be revised.We do this by increasing the value
of λN : we take λN = 2× 4× 10−9=8× 10−9 g/ml/day, and
then λA = 8 × 10−10 g/ml/day.
The number of astrocytes is approximately equal to the

number of neurons [86, 87], hence A0 = N0 = 0.14 g/ml.

Eq. (3)
Half-life of tau proteins is 60 hours [88]. Hence dτ =
ln2

60/24 = 24ln2=0.277/day. Concentration of tau proteins is
in healthy normal individuals is 137 pg/ml and, in AD, 490
pg/ml [89]. From the steady state of Eq. (3) in the healthy
case, we have λτ0 = dτ τ , where τ = 137 pg/ml. Hence
λτ0=3.78 × 10−11 g/ml/day. Similarly, λτ0 + λτR = dτ τ

in AD, where τ = 490 pg/ml. Hence we have λτR =
8.1 × 10−11 g/ml, or λτ = 1.35 × 10−11/day.

Eqs. (4) and (5)
We assume that neurofibrillary tangles inside neurons are
much more stable than tau proteins, taking dFi = 1

102 dτ =
2.77 × 10−3/day. We also assume that extracellular NFTs
do not degrade as fast as internalized NFTs, taking dFo =
1
10dFi = 2.77 × 10−4/day.
We also assume that 60% of the hyperphosphorglated

tau proteins become neurofibrillary tangles. From the
steady state of Eq. (4) we then have that λF = 0.6dFo .
Hence λF = 1.662 × 10−3/day.

Eq. (6)
It is not known whether the rate of death of neurons
caused by NFT is larger or smaller than the death rate
caused by Tα . We take dNF = 2dNT , but the simulation
of the model in the case where dNT = 2dNF are very sim-
ilar (not shown here). Assuming that at steady state of
Eq. (6) the concentrations of Fi, Tα and I10 are at half-
saturation, we get dNF

(
1
2 + 1

4
1

1+γ

)
= dN , so that dNF =

4+4γ
3+2γ ×1.9×10−4/day and dNT = 2+2γ

3+2γ ×1.9×10−4/day. In
particular, if γ = 1 then dNF = 2.4× 10−4/day and dNT =
1.7 × 10−4/day. We take KI10 = 2 × 10−6 g/cm3 (which is
somewhat larger than the estimated half-saturation of I10
in lung inflammation [47, 90]).We assume that in AD, 60%
of hyperphosphorylated tau proteins (whose concentra-
tion in disease is 490 pg/ml [89]) are in NFT form, so that
KFi = 0.6×490 pg/ml=2.94×10−10 g/ml. In [89] the con-
centration of tau protein was taken uniformly in the tissue
of patients. We assume, however, that the concentration
of NFT is higher inside neurons than outside neurons,
and take KFi = 3.36 × 10−10 g/ml, KFo = 2.58 × 10−11

g/ml. From the steady state of Eq. (17) and the estimates
of λTαM1 and λTαM̂1

(see under Eq. (17) below) we get
Tα = 4 × 10−5 g/ml, so that KTα = 4 × 10−5 g/ml.

Eq. (7)
We take the half-life of astrocytes to be the same as the
half-life of ganglionic glial cells, that is, 600 days [91].
Hence dA = 1.2 × 10−3/day. We assume that the activa-
tion of astrocytes is due more to TNF-α than to Aβ , and
take λATαTα = 2λAAo

β
Ao

β . By the steady state of Eq. (7) we
then get λATα = 1.4/day, and λAAo

β
= 1.63/day. Actually, in

a mouse model of AD, the number of activated astrocytes
is increasing [58]. So we compensate for this by increasing
both λATα and λAAo

β
by a factor 1.1, taking λATα = 1.54/day

and λAAo
β

= 1.793/day.

Eq. (8)
In mice experiments [92], macrophages phagocytosed
apoptotic cells at rates that varied in the range 0.1–1.27/h.
We assume that necrotic cells (and their debris) in human
brain are phagocytosed by peripheral macrophages at rate
dNdM̂ = 0.2/day. We also assume that microglia play a
greater role in clearing necrotic neurons, and take dNdM =
3 × 0.2=0.6/day. We also take K̄Nd = 10−3 g/ml.

Eq. (9)
We assume the degradation rate of AO is much slower
than that of Ao

β , taking dAO = 1
10dAo

β
= 0.951/day. The

ratio of soluble AO to total Ao
β is approximately 1

25 [93].
From the steady state of Eq. (9) we then get λAO =

1
25dAO = 3.8 × 10−2/day.
The estimate of λAO was based on the steady-state

assumption in Eq. (9). However, in AD the soluble
Aβ oligomer is continuously increasing, following the
increase in Ao

β , so the steady-state assumption needs to be
revised. We do this by increasing the above value of λAO,
taking the new value to be λAO = 5 × 10−2/day.

Eq. (10)
Concentration of HMGB-1 in neurons is 1.3 ng/ml [94],
hence H = 0.14 × 1.3 ng/ml=1.8 × 10−10 g/ml. Half-life
of HMGB-1 is 17 minutes [95], so that dH = 58.71/day.
We assume thatNd stabilizes somewhere below 2.5×10−4

g/ml. From the steady state of Eq. (10), we then get λH =
3 × 10−5/day.

Eqs. (11) and (12)
We take dM1 = dM2 = 0.015/day [47, 90]. Then, our
assumption (under Eq. (2)) that KM1 > KM2 suggests that
β > 1. We take β = 10.
We take M0

G = KM = 0.047 g/ml and α = 5. In
the absence of data, we take the production rate λMF of
macrophages by NFT to be the same as the production
rate under stimulation byM. Tuberculosis in [90], namely,
λMF = 2 × 10−2/day. We assume that production rate of
macrophages by NFT is larger than the production rate by
AO, and take λMA = 2.3 × 10−3/day.
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By [57] the concentration of Aβ in AD is 7 × 10−6 g/ml
and, by [55], the ratio of AO to Ao

β is 1
25 , so that KAO =

1
25 × 7 × 10−6 = 2.8 × 10−7 g/ml.
We assume that more NFT reside within neurons than

outside them, so thatKFo is smaller thanKFi . Recalling that
KFi = 3.36×10−10 g/ml, we takeKFO = 2.58×10−11 g/ml.
The coefficient λM1Tβ

is the rate by which TGF-β affects
the change of phenotype from M1 to M2. In the case of
infection in the lung by M. tuberculosis, under inflamma-
tory conditions caused by the pathogen, λM1Tβ

= 6 ×
10−3/day [90]; we take it to be the same in the present case.
We take KTβ

= 2.5 × 10−7 g/ml, and KI10 = 2.5 × 10−6

g/ml.

Eqs. (13) and (14)
Peripheral macrophages immigrate into the brain of AD
[96, 97]. We assume that, because of the BBB, the con-
centration of monocytes in the brain capillaries must be
significantly higher than the concentration of peripheral
macrophages already in the tissue. Recalling that in steady
state M̂ = 0.047 g/ml, we take M0 = 0.05 g/ml. The
parameter α was estimated by 5, in order to make the
asymptotic behavior of M̂ in the simulations agree with its
assumed steady state of 0.047 g/ml (under Eq. (2)). When
microglia cells are activated, they become either of M1 or
M2 phenotype. But peripheral macrophages are initially
biased toward M̂1 phenotype rather than M̂2 phenotype,
since KTα > KI10 . We assume, in line with this bias toward
M̂1, that the transition rate from M̂1 into M̂2 phenotype
by TGF-β is at a smaller rate than the corresponding tran-
sition rate for microglias, that is, λM̂1Tβ

< λM1Tβ
. We take

λM̂1Tβ
= 6 × 10−4/day.

Eq. (17)
Activated alveolar macrophages produce TNF-α at rate
4.86 × 10−3/day [47]. We assume that proinflammatory
macrophages produce TNF-α at a larger rate (five fold),
taking λTαM1 = λTαM̂1

= 3 × 10−2 g/ml.

Eq. (18)
Astrocytes secrete MCP-1 [17–19] but activated anti-
inflammatory microglias also secrete MCP-1. We assume
that the production rate by astrocytes in larger than that
by M2, and take λPA = 1

2λPM2 . MCP-1 concentration in
initial stages of AD is 750 pg/ml [98]. Using the steady
state equation

λPM2
1
2
A0 + λPM2M2 = dPP,

with P = 6 × 10−9 g/ml and dP = 1.73/day [74], we get
λPM2 = 1.2 × 10−7/day and λPA = 6 × 10−8/day [47].
SinceA is increasing in time, also P is increasing in time.

Hence the steady state assumption needs to be revised.We

do it by increasing λPA and λPM2 by a factor 1.1, taking
λPM2 = 1.32 × 10−7/day, and λPA = 6.6 × 10−8/day.
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