72 research outputs found

    Renormalization of the noncommutative photon self-energy to all orders via Seiberg-Witten map

    Full text link
    We show that the photon self-energy in quantum electrodynamics on noncommutative R4\mathbb{R}^4 is renormalizable to all orders (both in θ\theta and \hbar) when using the Seiberg-Witten map. This is due to the enormous freedom in the Seiberg-Witten map which represents field redefinitions and generates all those gauge invariant terms in the θ\theta-deformed classical action which are necessary to compensate the divergences coming from loop integrations.Comment: 12 pages, LaTeX2e. v3: added references, changed title. The general renormalizability proof for noncommutative Maxwell theory turned out to be incomplete, therefore, we have to restrict the proof to the noncommutative photon self-energ

    Alkylation of rabbit muscle creatine kinase surface methionine residues inhibits enzyme activity in vitro

    Get PDF
    Creatine kinase (CK) catalyzes the formation of phosphocreatine from adenosine triphosphate (ATP) and creatine. The highly reactive free cysteine residue in the active site of the enzyme (Cys283) is considered essential for the enzymatic activity. In previous studies we demonstrated that Cys283 is targeted by the alkylating chemical warfare agent sulfur mustard (SM) yielding a thioether with a hydroxyethylthioethyl (HETE)-moiety. In the present study, the effect of SM on rabbit muscle CK (rmCK) activity was investigated with special focus on the alkylation of Cys283 and of reactive methionine (Met) residues. For investigation of SM-alkylated amino acids in rmCK, micro liquid chromatography-electrospray ionization high-resolution tandem-mass spectrometry measurements were performed using the Orbitrap technology. The treatment of rmCK with SM resulted in a decrease of enzyme activity. However, this decrease did only weakly correlate to the modification of Cys283 but was conclusive for the formation of Met70-HETE and Met179-HETE. In contrast, the activity of mutants of rmCK produced by side-directed mutagenesis that contained substitutions of the respective Met residues (Met70Ala, Met179Leu, and Met70Ala/Met179Leu) was highly resistant against SM. Our results point to a critical role of the surface exposed Met70 and Met179 residues for CK activity

    Transient Receptor Potential Channel A1 (TRPA1) Regulates Sulfur Mustard-Induced Expression of Heat Shock 70 kDa Protein 6 (HSPA6) In Vitro

    Get PDF
    The chemosensory transient receptor potential ankyrin 1 (TRPA1) ion channel perceives different sensory stimuli. It also interacts with reactive exogenous compounds including the chemical warfare agent sulfur mustard (SM). Activation of TRPA1 by SM results in elevation of intracellular calcium levels but the cellular consequences are not understood so far. In the present study we analyzed SM-induced and TRPA1-mediated effects in human TRPA1-overexpressing HEK cells (HEKA1) and human lung epithelial cells (A549) that endogenously exhibit TRPA1. The specific TRPA1 inhibitor AP18 was used to distinguish between SM-induced and TRPA1-mediated or TRPA1-independent effects. Cells were exposed to 600 mu M SM and proteome changes were investigated 24 h afterwards by 2D gel electrophoresis. Protein spots with differential staining levels were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and nano liquid chromatography electrospray ionization tandem mass spectrometry. Results were verified by RT-qPCR experiments in both HEKA1 or A549 cells. Heat shock 70 kDa protein 6 (HSPA6) was identified as an SM-induced and TRPA1-mediated protein. AP18 pre-treatment diminished the up-regulation. RT-qPCR measurements verified these results and further revealed a time-dependent regulation. Our results demonstrate that SM-mediated activation of TRPA1 influences the protein expression and confirm the important role of TRPA1 ion channels in the molecular toxicology of SM

    Revealing the Chemical Composition of Birch Pollen Grains by Raman Spectroscopic Imaging

    Get PDF
    The investigation of the biochemical composition of pollen grains is of the utmost interest for several environmental aspects, such as their allergenic potential and their changes in growth conditions due to climatic factors. In order to fully understand the composition of pollen grains, not only is an in-depth analysis of their molecular components necessary but also spatial information of, e.g., the thickness of the outer shell, should be recorded. However, there is a lack of studies using molecular imaging methods for a spatially resolved biochemical composition on a single-grain level. In this study, Raman spectroscopy was implemented as an analytical tool to investigate birch pollen by imaging single pollen grains and analyzing their spectral profiles. The imaging modality allowed us to reveal the layered structure of pollen grains based on the biochemical information of the recorded Raman spectra. Seven different birch pollen species collected at two different locations in Germany were investigated and compared. Using chemometric algorithms such as hierarchical cluster analysis and multiple-curve resolution, several components of the grain wall, such as sporopollenin, as well as the inner core presenting high starch concentrations, were identified and quantified. Differences in the concentrations of, e.g., sporopollenin, lipids and proteins in the pollen species at the two different collection sites were found, and are discussed in connection with germination and other growth processes

    Comparison of intraoperative radiotherapy as a boost vs. simultaneously integrated boosts after breast-conserving therapy for breast cancer

    Get PDF
    BackgroundCurrently, there are no data from randomized trials on the use of intraoperative radiotherapy (IORT) as a tumor bed boost in women at high risk of local recurrence. The aim of this retrospective analysis was to compare the toxicity and oncological outcome of IORT or simultaneous integrated boost (SIB) with conventional external beam radiotherapy (WBI) after breast conserving surgery (BCS).MethodsBetween 2009 and 2019, patients were treated with a single dose of 20 Gy IORT with 50 kV photons, followed by WBI 50 Gy in 25 or 40.05 in 15 fractions or WBI 50 Gy with SIB up to 58.80–61.60 Gy in 25–28 fractions. Toxicity was compared after propensity score matching. Overall survival (OS) and progression-free survival (PFS) were calculated using the Kaplan–Meier method.ResultsA 1:1 propensity-score matching resulted in an IORT + WBI and SIB + WBI cohort of 60 patients, respectively. The median follow-up for IORT + WBI was 43.5 vs. 32 months in the SIB + WBI cohort. Most women had a pT1c tumor: IORT group 33 (55%) vs. 31 (51.7%) SIB group (p = 0.972). The luminal-B immunophenotype was most frequently diagnosed in the IORT group 43 (71.6%) vs. 35 (58.3%) in the SIB group (p = 0.283). The most reported acute adverse event in both groups was radiodermatitis. In the IORT cohort, radiodermatitis was grade 1: 23 (38.3%), grade 2: 26 (43.3%), and grade 3: 6 (10%) vs. SIB cohort grade 1: 3 (5.1%), grade 2: 21 (35%), and grade 3: 7 (11.6%) without a meaningful difference (p = 0.309). Fatigue occurred more frequently in the IORT group (grade 1: 21.7% vs. 6.7%; p = 0.041). In addition, intramammary lymphedema grade 1 occurred significantly more often in the IORT group (11.7% vs. 1.7%; p = 0.026). Both groups showed comparable late toxicity. The 3- and 5-year local control (LC) rates were each 98% in the SIB group vs. 98% and 93% in the IORT group (LS: log rank p = 0.717).ConclusionTumor bed boost using IORT and SIB techniques after BCS shows excellent local control and comparable late toxicity, while IORT application exhibits a moderate increase in acute toxicity. These data should be validated by the expected publication of the prospective randomized TARGIT-B study

    First Measurement of the 96^{96}Ru(p,γ\gamma)97^{97}Rh Cross Section for the p-Process with a Storage Ring

    Get PDF
    This work presents a direct measurement of the 96^{96}Ru(p,γp, \gamma)97^{97}Rh cross section via a novel technique using a storage ring, which opens opportunities for reaction measurements on unstable nuclei. A proof-of-principle experiment was performed at the storage ring ESR at GSI in Darmstadt, where circulating 96^{96}Ru ions interacted repeatedly with a hydrogen target. The 96^{96}Ru(p,γp, \gamma)97^{97}Rh cross section between 9 and 11 MeV has been determined using two independent normalization methods. As key ingredients in Hauser-Feshbach calculations, the γ\gamma-ray strength function as well as the level density model can be pinned down with the measured (p,γp, \gamma) cross section. Furthermore, the proton optical potential can be optimized after the uncertainties from the γ\gamma-ray strength function and the level density have been removed. As a result, a constrained 96^{96}Ru(p,γp, \gamma)97^{97}Rh reaction rate over a wide temperature range is recommended for pp-process network calculations.Comment: 10 pages, 7 figs, Accepted for publication at PR

    Measurements of proton-induced reactions on ruthenium-96 in the ESR at GSI

    Get PDF
    8th International Conference on Nuclear Physics at Storage Rings Stori11, October 9-14, 2011 Laboratori Nazionale di Frascati, Italy. Storage rings offer the possibility of measuring proton- and alpha-induced reactions in inverse kinematics. The combination of this approachwith a radioactive beamfacility allows, in principle, the determination of the respective cross sections for radioactive isotopes. Such data are highly desired for a better understanding of astrophysical nucleosynthesis processes like the p-process. A pioneering experiment has been performed at the Experimental Storage Ring (ESR) at GSI using a stable 96Ru beam at 9-11 AMeV and a hydrogen target. Monte-Carlo simulations of the experiment were made using the Geant4 code. In these simulations, the experimental setup is described in detail and all reaction channels can be investigated. Based on the Geant4 simulations, a prediction of the shape of different spectral components can be performed. A comparison of simulated predictions with the experimental results shows a good agreement and allows the extraction of the cross section

    Metabolite Profiling of Alzheimer's Disease Cerebrospinal Fluid

    Get PDF
    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive loss of cognitive functions. Today the diagnosis of AD relies on clinical evaluations and is only late in the disease. Biomarkers for early detection of the underlying neuropathological changes are still lacking and the biochemical pathways leading to the disease are still not completely understood. The aim of this study was to identify the metabolic changes resulting from the disease phenotype by a thorough and systematic metabolite profiling approach. For this purpose CSF samples from 79 AD patients and 51 healthy controls were analyzed by gas and liquid chromatography-tandem mass spectrometry (GC-MS and LC-MS/MS) in conjunction with univariate and multivariate statistical analyses. In total 343 different analytes have been identified. Significant changes in the metabolite profile of AD patients compared to healthy controls have been identified. Increased cortisol levels seemed to be related to the progression of AD and have been detected in more severe forms of AD. Increased cysteine associated with decreased uridine was the best paired combination to identify light AD (MMSE>22) with specificity and sensitivity above 75%. In this group of patients, sensitivity and specificity above 80% were obtained for several combinations of three to five metabolites, including cortisol and various amino acids, in addition to cysteine and uridine
    corecore