2,345 research outputs found

    A proof-of-concept neural network for inferring parameters of a black hole from partial interferometric images of its shadow

    Full text link
    We test the possibility of using a convolutional neural network to infer the inclination angle of a black hole directly from the incomplete image of the black hole's shadow in the uvuv-plane. To this end, we develop a proof-of-concept network and use it to explicitly find how the error depends on the degree of coverage, type of input and coverage pattern. We arrive at a typical error of 1010^\circ at a level of absolute coverage 1%1\% (for a pattern covering a central part of the uvuv-plane), 0.3%0.3\% (pattern covering the central part and the periphery, the 0.3%0.3\% referring to the central part only), and 14%14\% (uniform pattern). These numbers refer to a network that takes both amplitude and phase of the visibility function as inputs. We find that this type of network works best in terms of the error itself and its distribution for different angles. In addition, the same type of network demonstrates similarly good performance on highly blurred images mimicking sources nearing being unresolved. In terms of coverage, the magnitude of the error does not change much as one goes from the central pattern to the uniform one. We argue that this may be due to the presence of a typical scale which can be mostly learned by the network from the central part alone.Comment: 12 pages, 10 figures. For the code and trained models, see https://bitbucket.org/cosmoVlad/neuro-rep

    Hyperspectral system for Imaging of skin chromophores and blood oxygenation

    Get PDF
    We developed a compact, fast, hand-held hyperspectral imaging system for 2D neural network-based visualization of skin chromophores and blood oxygenation. Here, we present results of the system tests on healthy volunteers

    Effects of upper mantle heterogeneities on the lithospheric stress field and dynamic topography

    Get PDF
    The orientation and tectonic regime of the observed crustal/lithospheric stress field contribute to our knowledge of different deformation processes occurring within the Earth's crust and lithosphere. In this study, we analyze the influence of the thermal and density structure of the upper mantle on the lithospheric stress field and topography. We use a 3-D lithosphere–asthenosphere numerical model with power-law rheology, coupled to a spectral mantle flow code at 300 km depth. Our results are validated against the World Stress Map 2016 (WSM2016) and the observation-based residual topography. We derive the upper mantle thermal structure from either a heat flow model combined with a seafloor age model (TM1) or a global S-wave velocity model (TM2). We show that lateral density heterogeneities in the upper 300 km have a limited influence on the modeled horizontal stress field as opposed to the resulting dynamic topography that appears more sensitive to such heterogeneities. The modeled stress field directions, using only the mantle heterogeneities below 300 km, are not perturbed much when the effects of lithosphere and crust above 300 km are added. In contrast, modeled stress magnitudes and dynamic topography are to a greater extent controlled by the upper mantle density structure. After correction for the chemical depletion of continents, the TM2 model leads to a much better fit with the observed residual topography giving a good correlation of 0.51 in continents, but this correction leads to no significant improvement of the fit between the WSM2016 and the resulting lithosphere stresses. In continental regions with abundant heat flow data, TM1 results in relatively small angular misfits. For example, in western Europe the misfit between the modeled and observation-based stress is 18.3°. Our findings emphasize that the relative contributions coming from shallow and deep mantle dynamic forces are quite different for the lithospheric stress field and dynamic topography

    Speckle dynamics under ergodicity breaking

    Get PDF
    Laser speckle contrast imaging (LSCI) is a well-known and versatile approach for the non-invasive visualization of flows and microcirculation localized in turbid scattering media, including biological tissues. In most conventional implementations of LSCI the ergodic regime is typically assumed valid. However, most composite turbid scattering media, especially biological tissues, are non-ergodic, containing a mixture of dynamic and static centers of light scattering. In the current study, we examined the speckle contrast in different dynamic conditions with the aim of assessing limitations in the quantitative interpretation of speckle contrast images. Based on a simple phenomenological approach, we introduced a coefficient of speckle dynamics to quantitatively assess the ratio of the dynamic part of a scattering medium to the static one. The introduced coefficient allows one to distinguish real changes in motion from the mere appearance of static components in the field of view. As examples of systems with static/dynamic transitions, thawing and heating of Intralipid samples were studied by the LSCI approach

    Impact of Plasmonic Nanoparticles on Poikilocytosis and Microrheological Properties of Erythrocytes

    Get PDF
    Plasmonic nanoparticles (NP) possess great potential in photothermal therapy and diagnostics. However, novel NP require a detailed examination for potential toxicity and peculiarities of interaction with cells. Red blood cells (RBC) are important for NP distribution and the development of hybrid RBC-NP delivery systems. This research explored RBC alterations induced by noble (Au and Ag) and nitride-based (TiN and ZrN) laser-synthesized plasmonic NP. Optical tweezers and conventional microscopy modalities indicated the effects arising at non-hemolytic levels, such as RBC poikilocytosis, and alterations in RBC microrheological parameters, elasticity and intercellular interactions. Aggregation and deformability significantly decreased for echinocytes independently of NP type, while for intact RBC, all NP except Ag NP increased the interaction forces but had no effect on RBC deformability. RBC poikilocytosis promoted by NP at concentration 50 μg mL−1 was more pronounced for Au and Ag NP, compared to TiN and ZrN NP. Nitride-based NP demonstrated better biocompatibility towards RBC and higher photothermal efficiency than their noble metal counterparts

    Single-Stage Extracranial and Intracranial Stenting of the Internal Carotid Artery in a Patient with Open Circle of Willis and Associated Renovascular Hypertension

    Get PDF
    We describe a case of 72-year-old patient with recurrent transient ischemic attacks in the right internal carotid artery (ICA) territory associated with uncontrolled hypertension. Duplex ultrasonography und carotid angiography showed a 60% stenosis with signs of a vulnerable plaque in the cervical segment, as well as a 90% stenosis in the cavernous segment of the right ICA. After further examination the patient was diagnosed with an 80% renal artery stenosis. First, the patient had a single-stage stenting for extracranial and intracranial stenoses of the right ICA, then left renal artery stenting. No intraoperative and postoperative complications were observed. These results show that this surgical treatment is minimally invasive, safe, and effective in symptomatic patients and may be considered for the disease

    Transition metal dichalcogenide nanospheres for high-refractive-index nanophotonics and biomedical theranostics

    Get PDF
    Recent developments in the area of resonant dielectric nanostructures have created attractive opportunities for concentrating and manipulating light at the nanoscale and the establishment of the new exciting field of all-dielectric nanophotonics. Transition metal dichalcogenides (TMDCs) with nanopatterned surfaces are especially promising for these tasks. Still, the fabrication of these structures requires sophisticated lithographic processes, drastically complicating application prospects. To bridge this gap and broaden the application scope of TMDC nanomaterials, we report here femtosecond laser-ablative fabrication of water-dispersed spherical TMDC (MoS2 and WS2) nanoparticles (NPs) of variable size (5 to 250 nm). Such NPs demonstrate exciting optical and electronic properties inherited from TMDC crystals, due to preserved crystalline structure, which offers a unique combination of pronounced excitonic response and high refractive index value, making possible a strong concentration of electromagnetic field in the NPs. Furthermore, such NPs offer additional tunability due to hybridization between the Mie and excitonic resonances. Such properties bring to life a number of nontrivial effects, including enhanced photoabsorption and photothermal conversion. As an illustration, we demonstrate that the NPs exhibit a very strong photothermal response, much exceeding that of conventional dielectric nanoresonators based on Si. Being in a mobile colloidal state and exhibiting superior optical properties compared to other dielectric resonant structures, the synthesized TMDC NPs offer opportunities for the development of next-generation nanophotonic and nanotheranostic platforms, including photothermal therapy and multimodal bioimaging

    Electrospun Biodegradable Nanofibers Coated Homogenously by Cu Magnetron Sputtering Exhibit Fast Ion Release. Computational and Experimental Study

    Get PDF
    Copper-coated nanofibrous materials are desirable for catalysis, electrochemistry, sensing, and biomedical use. The preparation of copper or copper-coated nanofibers can be pretty challenging, requiring many chemical steps that we eliminated in our robust approach, where for the first time, Cu was deposited by magnetron sputtering onto temperature-sensitive polymer nanofibers. For the first time, the large-scale modeling of PCL films irradiation by molecular dynamics simulation was performed and allowed to predict the ions penetration depth and tune the deposition conditions. The Cu-coated polycaprolactone (PCL) nanofibers were thoroughly characterized and tested as antibacterial agents for various Gram-positive and Gram-negative bacteria. Fast release of Cu2+ ions (concentration up to 3.4 mu g/mL) led to significant suppression of E. coli and S. aureus colonies but was insufficient against S. typhimurium and Ps. aeruginosa. The effect of Cu layer oxidation upon contact with liquid media was investigated by X-ray photoelectron spectroscopy revealing that, after two hours, 55% of Cu atoms are in form of CuO or Cu(OH)(2). The Cu-coated nanofibers will be great candidates for wound dressings thanks to an interesting synergistic effect: on the one hand, the rapid release of copper ions kills bacteria, while on the other hand, it stimulates the regeneration with the activation of immune cells. Indeed, copper ions are necessary for the bacteriostatic action of cells of the immune system. The reactive CO2/C2H4 plasma polymers deposited onto PCL-Cu nanofibers can be applied to grafting of viable proteins, peptides, or drugs, and it further explores the versatility of developed nanofibers for biomedical applications use
    corecore