141 research outputs found

    Interacting circular nanomagnets

    Full text link
    Regular 2D rectangular lattices of permalloy nanoparticles (40 nm in diameter) were prepared by the method of the electron lithography. The magnetization curves were studied by Hall magnetometry with the compensation technique for different external field orientations at 4.2K and 77K. The shape of hysteresis curves indicates that there is magnetostatic interaction between the particles. The main peculiarity is the existence of remanent magnetization perpendicular to easy plain. By numerical simulation it is shown, that the character of the magnetization reversal is a result of the interplay of the interparticle interaction and the magnetization distribution within the particles (vortex or uniform).Comment: 16 pages, 8 figure

    Increased numbers of oligodendrocyte lineage cells in the optic nerves of cerebroside sulfotransferase knockout mice

    Get PDF
    Sulfatide is a myelin glycolipid that functions in the formation of paranodal axo-glial junctions in vivo and in the regulation of oligodendrocyte differentiation in vitro. Cerebroside sulfotransferase (CST) catalyzes the production of two sulfated glycolipids, sulfatide and proligodendroblast antigen, in oligodendrocyte lineage cells. Recent studies have demonstrated significant increases in oligodendrocytes from the myelination stage through adulthood in brain and spinal cord under CST-deficient conditions. However, whether these result from excess migration or in situ proliferation during development is undetermined. In the present study, CST-deficient optic nerves were used to examine migration and proliferation of oligodendrocyte precursor cells (OPCs) under sulfated glycolipid-deficient conditions. In adults, more NG2-positive OPCs and fully differentiated cells were observed. In developing optic nerves, the number of cells at the leading edge of migration was similar in CST-deficient and wild-type mice. However, BrdU+ proliferating OPCs were more abundant in CST-deficient mice. These results suggest that sulfated glycolipids may be involved in proliferation of OPCs in vivo

    RNAi-mediated suppression of isoprene emission in poplar transiently impacts phenolic metabolism under high temperature and high light intensities: a transcriptomic and metabolomic analysis

    Get PDF
    In plants, isoprene plays a dual role: (a) as thermo-protective agent proposed to prevent degradation of enzymes/membrane structures involved in photosynthesis, and (b) as reactive molecule reducing abiotic oxidative stress. The present work addresses the question whether suppression of isoprene emission interferes with genome wide transcription rates and metabolite fluxes in grey poplar (Populusxcanescens) throughout the growing season. Gene expression and metabolite profiles of isoprene emitting wild type plants and RNAi-mediated non-isoprene emitting poplars were compared by using poplar Affymetrix microarrays and non-targeted FT-ICR-MS (Fourier transform ion cyclotron resonance mass spectrometry). We observed a transcriptional down-regulation of genes encoding enzymes of phenylpropanoid regulatory and biosynthetic pathways, as well as distinct metabolic down-regulation of condensed tannins and anthocyanins, in non-isoprene emitting genotypes during July, when high temperature and light intensities possibly caused transient drought stress, as indicated by stomatal closure. Under these conditions leaves of non-isoprene emitting plants accumulated hydrogen peroxide (H2O2), a signaling molecule in stress response and negative regulator of anthocyanin biosynthesis. The absence of isoprene emission under high temperature and light stress resulted transiently in a new chemo(pheno)type with suppressed production of phenolic compounds. This may compromise inducible defenses and may render non-isoprene emitting poplars more susceptible to environmental stress

    Human midbrain precursors activate the expected developmental genetic program and differentiate long-term to functional A9 dopamine neurons in vitro. Enhancement by Bcl-XL

    Full text link
    Understanding the molecular programs of the generation of human dopaminergic neurons (DAn) from their ventral mesencephalic (VM) precursors is of key importance for basic studies, progress in cell therapy, drug screening and pharmacology in the context of Parkinson's disease. The nature of human DAn precursors in vitro is poorly understood, their properties unstable, and their availability highly limited. Here we present positive evidence that human VM precursors retaining their genuine properties and long-term capacity to generate A9 type Substantia nigra human DAn (hVM1 model cell line) can be propagated in culture. During a one month differentiation, these cells activate all key genes needed to progress from pro-neural and prodopaminergic precursors to mature and functional DAn. For the first time, we demonstrate that gene cascades are correctly activated during differentiation, resulting in the generation of mature DAn. These DAn have morphological and functional properties undistinguishable from those generated by VM primary neuronal cultures. In addition, we have found that the forced expression of Bcl-XL induces an increase in the expression of key developmental genes (MSX1, NGN2), maintenance of PITX3 expression temporal profile, and also enhances genes involved in DAn long-term function, maintenance and survival (EN1, LMX1B, NURR1 and PITX3). As a result, Bcl-XL anticipates and enhances DAn generation

    Comparative transcriptomics of drought responses in Populus: a meta-analysis of genome-wide expression profiling in mature leaves and root apices across two genotypes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Comparative genomics has emerged as a promising means of unravelling the molecular networks underlying complex traits such as drought tolerance. Here we assess the genotype-dependent component of the drought-induced transcriptome response in two poplar genotypes differing in drought tolerance. Drought-induced responses were analysed in leaves and root apices and were compared with available transcriptome data from other <it>Populus </it>species.</p> <p>Results</p> <p>Using a multi-species designed microarray, a genomic DNA-based selection of probesets provided an unambiguous between-genotype comparison. Analyses of functional group enrichment enabled the extraction of processes physiologically relevant to drought response. The drought-driven changes in gene expression occurring in root apices were consistent across treatments and genotypes. For mature leaves, the transcriptome response varied weakly but in accordance with the duration of water deficit. A differential clustering algorithm revealed similar and divergent gene co-expression patterns among the two genotypes. Since moderate stress levels induced similar physiological responses in both genotypes, the genotype-dependent transcriptional responses could be considered as intrinsic divergences in genome functioning. Our meta-analysis detected several candidate genes and processes that are differentially regulated in root and leaf, potentially under developmental control, and preferentially involved in early and long-term responses to drought.</p> <p>Conclusions</p> <p>In poplar, the well-known drought-induced activation of sensing and signalling cascades was specific to the early response in leaves but was found to be general in root apices. Comparing our results to what is known in arabidopsis, we found that transcriptional remodelling included signalling and a response to energy deficit in roots in parallel with transcriptional indices of hampered assimilation in leaves, particularly in the drought-sensitive poplar genotype.</p
    corecore