240 research outputs found

    Effects on differentiation of embryonic ventral midbrain progenitors by Lmx1a, MSX1, Ngn2, and Pitx3.

    Get PDF
    Neurons derived from neural stem cells could potentially be used for cell therapy in neurodegenerative disorders, such as Parkinson's disease. To achieve controlled differentiation of neural stem cells, we expressed transcription factors involved in the development of midbrain dopaminergic neurons in rat and human neural progenitors. Using retroviral-mediated transgene delivery, we overexpressed Lmx1a (LIM homeobox transcription factor 1, alpha), Msx1 (msh homeobox homolog 1), Ngn2 (neurogenin 2), or Pitx3 (paired-like homeodomain transcription factor 3) in neurospheres derived from embryonic day 14.5 rat ventral mesencephalic progenitors. We also expressed either Lmx1a or Msx1 in the human embryonic midbrain-derived progenitor cell line NGC-407. Rat cells transduced with Ngn2 exited the cell cycle and expressed the neuronal marker microtubule-associated protein 2 and catecholamine-neuron protein vesicular monoamine transporter 2. Interestingly, Pitx3 downregulated the expression of SOX2 (SRY-box containing gene 2) and Nestin, altered cell morphology, but never induced neuronal or glial differentiation. Ngn2 exhibited a strong neuron-inducing effect. In contrast, few Lmx1a-transduced cells matured into neurons, and Msx1 overexpression promoted oligodendrogenesis rather than neuronal differentiation. Importantly, none of these four genes, alone or in combination, enhanced differentiation of rat neural stem cells into dopaminergic neurons. Notably, the overexpression of Lmx1a, but not Msx1, in human neural progenitors increased the yield of tyrosine hydroxylase-immunoreactive cells by threefold. Together, we demonstrate that induced overexpression of transcription factor genes has profound and specific effects on the differentiation of rat and human midbrain progenitors, although few dopamine neurons are generated

    Neurogenin2 Directs Granule Neuroblast Production and Amplification while NeuroD1 Specifies Neuronal Fate during Hippocampal Neurogenesis

    Get PDF
    The specification and differentiation of dentate gyrus granule neurons in the hippocampus require temporally and spatially coordinated actions of both intrinsic and extrinsic molecules. The basic helix-loop-helix transcription factor Neurogenin2 (Ngn2) and NeuroD1 are key regulators in these processes. Based on existing classification, we analyzed the molecular events occurring during hippocampal neurogenesis, primarily focusing on juvenile animals. We found that Ngn2 is transiently expressed by late type-2a amplifying progenitors. The Ngn2 progenies mature into hippocampal granule neurons. Interestingly, the loss of Ngn2 at early stages of development leads to a robust reduction in neurogenesis, but does not disturb granule neuron maturation per se. We found that the role of Ngn2 is to maintain progenitors in an undifferentiated state, allowing them to amplify prior to their maturation into granule neurons upon NeuroD1 induction. When we overexpressed Ngn2 and NeuroD1 in vivo, we found NeuroD1 to exhibit a more pronounced neuron-inductive effect, leading to granule neuron commitment, than that displayed by Ngn2. Finally, we observed that all markers expressed during the transcriptional control of hippocampal neurogenesis in rodents are also present in the human hippocampus. Taken together, we demonstrate a critical role of for Ngn2 and NeuroD1 in controlling neuronal commitment and hippocampal granule neuroblast formation, both during embryonic development and in post-natal hippocampal granule neurogenesis

    Generation of a human induced pluripotent stem cell line (CSC-40) from a Parkinson's disease patient with a PINK1 p.Q456X mutation

    Get PDF
    Parkinson's disease (PD) is a neurodegenerative disease with unknown etiology. Here we show the generation of an induced pluripotent stem cell (iPSC) line, named CSC-40, from dermal fibroblasts obtained from a 59-year-old male patient with a homozygous p.Q456X mutation in the PTEN-induced putative kinase 1 (PINK/PARK6) gene and a confirmed diagnosis of PD, which could be used to model familial PD. A non-integrating Sendai virus-based delivery of the reprogramming factors OCT3/4, SOX2, c-MYC and KLF4 was employed. The CSC-40 cell line showed normal karyotyping and fingerprinting following transduction as well as sustained expression of several pluripotency markers and the ability to differentiate into all three germ layers.We thank AnnaKarin Olden and Marianne Juhlin, for their technical support. We are also thankful to the 'Cell Line and DNA Biobank from Patients affected by Genetic Diseases' (Istituto G. Gaslini, Genova, Italy) and the Parkinson Institute Biobank, members of the Telethon Network of Genetic Biobanks (http://biobanknetwork.telethon.it; project no. GTB12001) funded by Telethon Italy, for providing fibroblasts samples. This work was supported by the Strategic Research Environment MultiPark at Lund University, and the strong research environment BAGADILICO (grant 349-2007-8626), the Swedish Parkinson Foundation (Parkinsonoden; grant 889/16), the Swedish Research Council (grant 2015-03684 to LR), Finnish Cultural Foundation (grant 00161167 to YP) and the Portuguese Foundation for Science and Technology for the doctoral fellowship - PDE/BDE/113598/2015 to AM.info:eu-repo/semantics/publishedVersio

    Genetic manipulation of adult-born hippocampal neurons rescues memory in a mouse model of Alzheimer's disease

    Get PDF
    Richetin et al. demonstrate that retroviral expression of the transcription factor NeuroD1 in neural progenitor cells of the adult mouse hippocampus promotes differentiation, maturation and synaptic integration of newborn granule cells in vivo. When applied to a mouse model of Alzheimer's disease, the gene-targeting strategy abolishes hippocampus-dependent memory deficit

    Alpha-Synuclein Expression in the Oligodendrocyte Lineage: an In Vitro and In Vivo Study Using Rodent and Human Models.

    Get PDF
    In this study, we sought evidence for alpha-synuclein (ASYN) expression in oligodendrocytes, as a possible endogenous source of ASYN to explain its presence in glial inclusions found in multiple system atrophy (MSA) and Parkinson's disease (PD). We identified ASYN in oligodendrocyte lineage progenitors isolated from the rodent brain, in oligodendrocytes generated from embryonic stem cells, and in induced pluripotent stem cells produced from fibroblasts of a healthy individual and patients diagnosed with MSA or PD, in cultures in vitro. Notably, we observed a significant decrease in ΑSYN during oligodendrocyte maturation. Additionally, we show the presence of transcripts in PDGFRΑ/CD140a(+) cells and SOX10(+) oligodendrocyte lineage nuclei isolated by FACS from rodent and human healthy and diseased brains, respectively. Our work identifies ASYN in oligodendrocyte lineage cells, and it offers additional in vitro cellular models that should provide significant insights of the functional implication of ASYN during oligodendrocyte development and disease

    Etuaivoidentiteetillisten ihmisen monikykyisistä kantasoluista johdettujen astrosyyttien tuottaminen

    Get PDF
    Astrosyytit ovat hermoston tukisoluja, joiden toiminnalliset ja morfologiset ominaisuudet vaihtelevat eri aivoalueilla. Astrosyyttien ominaisuuksien vaihtelun on todettu olevan erityisen suurta ihmisen aivoissa. Ihmisen pluripotentit kantasolut (hPS-solut) mahdollistavat astroglian monimuotoisuutta säätelevien mekanismien tutkimisen. Olemme luoneet menetelmän, joka tuottaa hPS-soluista ihmisen etuaivojen astrosyyttejä, ja kuvanneet tuotettujen astrosyyttien erityispiirteitä. Määritimme hPS-soluista erilaistettujen solujen geenien ilmentymisprofiilin päivänä 0 (D0), neuronaalisen induktion jälkeen D12 sekä solujen kasvutekijöillä monistamisen jälkeen D30 ja D60. Astrosyyttien lopullinen määräytyminen toteutettiin siliaarisella neurotrofisella tekijällä (ciliary neurotrophic factor; CNTF) ja D95-ikäisien astrosyyttien osoitettiin ilmentävän lähes 100 prosenttisesti yleisesti käytössä olevia astrosyyttimarkkereita. Erilaistamisen aikana tehty geeniprofilointi vahvisti solujen etuaivojen identiteetin. Kuvasimme solunsisäisen kalsiumkuvantamisen avulla, että erilaistamamme astrosyytit olivat elinkykyisiä ja antoivat toiminnallisia vasteita ATP:lle. Lisäksi määritimme astrosyyttien perustehtävää eli kykyä säädellä immuunivasteita aivoissa tutkimalla niistä erittyvien sytokiinien määriä. Totesimme D95-astrosyyttien viljelynesteessä merkittäviä pitoisuuksia MCP-1- ja TIMP-2-proteiinia yhteneväisesti näitä proteiineja ilmentävien geenien kohonneisiin mRNA-määriin. Astrosyyttien erilaistamismenetelmä oli toistettavissa usealla hPSC-linjalla, ja tutkimuksemme osoitti, että erilaistamamme etuaivojen astrosyytit tarjoavat uudenlaisen keinon sekä astrosyyttien soluspesifisten ominaisuuksien että yhteisviljelmissä muiden hermoston solujen kanssa hermoston solujen yhteisvaikutusten tutkimiseen. Potilaskohtaisista hPS-soluista erilaistettujen astrosyyttien avulla voidaan selvittää ihmisen astrosyyttien toimintaa myös sairaustiloissa

    Generation of the Human Pluripotent Stem-Cell-Derived Astrocyte Model with Forebrain Identity

    Get PDF
    Astrocytes form functionally and morphologically distinct populations of cells with brainregion-specific properties. Human pluripotent stem cells (hPSCs) offer possibilities to generate astroglia for studies investigating mechanisms governing the emergence of astrocytic diversity. We established a method to generate human astrocytes from hPSCs with forebrain patterning and final specification with ciliary neurotrophic factor (CNTF). Transcriptome profiling and gene enrichment analysis monitored the sequential expression of genes determining astrocyte differentiation and confirmed activation of forebrain differentiation pathways at Day 30 (D30) and D60 of differentiation in vitro. More than 90% of astrocytes aged D95 in vitro co-expressed the astrocytic markers glial fibrillary acidic protein (GFAP) and S100 beta. Intracellular calcium responses to ATP indicated differentiation of the functional astrocyte population with constitutive monocyte chemoattractant protein-1 (MCP-1/CCL2) and tissue inhibitor of metalloproteinases-2 (TIMP-2) expression. The method was reproducible across several hPSC lines, and the data demonstrated the usefulness of forebrain astrocyte modeling in research investigating forebrain pathology.Peer reviewe

    Human Astrocytes Transfer Aggregated Alpha-Synuclein via Tunneling Nanotubes.

    Get PDF
    Many lines of evidence suggest that the Parkinson's disease (PD)-related protein α-synuclein (α-SYN) can propagate from cell to cell in a prion-like manner. However, the cellular mechanisms behind the spreading remain elusive. Here, we show that human astrocytes derived from embryonic stem cells actively transfer aggregated α-SYN to nearby astrocytes via direct contact and tunneling nanotubes (TNTs). Failure in the astrocytes' lysosomal digestion of excess α-SYN oligomers results in α-SYN deposits in the trans-Golgi network followed by endoplasmic reticulum swelling and mitochondrial disturbances. The stressed astrocytes respond by conspicuously sending out TNTs, enabling intercellular transfer of α-SYN to healthy astrocytes, which in return deliver mitochondria, indicating a TNT-mediated rescue mechanism. Using a pharmacological approach to inhibit TNT formation, we abolished the transfer of both α-SYN and mitochondria. Together, our results highlight the role of astrocytes in α-SYN cell-to-cell transfer, identifying possible pathophysiological events in the PD brain that could be of therapeutic relevance.SIGNIFICANCE STATEMENT Astrocytes are the major cell type in the brain, yet their role in Parkinson's disease progression remains elusive. Here, we show that human astrocytes actively transfer aggregated α-synuclein (α-SYN) to healthy astrocytes via direct contact and tunneling nanotubes (TNTs), rather than degrade it. The astrocytes engulf large amounts of oligomeric α-SYN that are subsequently stored in the trans-Golgi network region. The accumulation of α-SYN in the astrocytes affects their lysosomal machinery and induces mitochondrial damage. The stressed astrocytes respond by sending out TNTs, enabling intercellular transfer of α-SYN to healthy astrocytes. Our findings highlight an unexpected role of astrocytes in the propagation of α-SYN pathology via TNTs, revealing astrocytes as a potential target for therapeutic intervention

    Generation of an integration-free induced pluripotent stem cell line (CSC-43) from a patient with sporadic Parkinson's disease

    Get PDF
    An induced pluripotent stem cell (iPSC) line was generated from a 36-year-old patient with sporadic Parkinson's disease (PD). Skin fibroblasts were reprogrammed using the non-integrating Sendai virus technology to deliver OCT3/4, SOX2, c-MYC and KLF4 factors. The generated cell line (CSC-43) exhibits expression of common pluripotency markers, in vitro differentiation into three germ layers and normal karyotype. This iPSC line can be used to study the mechanisms underlying the development of PD.‘Cell Line and DNA Biobank from Patients affected by Genetic Diseases’ (Istituto G. Gaslini, Genova, Italy) and the Parkinson Institute Biobank, members of the Telethon Network of Genetic Biobanks (http://biobanknetwork.telethon.it; project no. GTB12001) funded by Telethon Italy, for providing fibroblasts samples. This work was supported by the Strategic Research Environment MultiPark at Lund University, the strong research environment BAGADILICO (grant 349-2007-8626), the Swedish Parkinson Foundation (Parkinsonfonden, grant 889/16), the Swedish Research Council (grant 2015-03684 to LR) and Finnish Cultural Foundation (grant 00161167 to YP). We also acknowledge the Portuguese Foundation for Science and Technologyinfo:eu-repo/semantics/publishedVersio

    Generation of an induced pluripotent stem cell line (CSC-44) from a Parkinson's disease patient carrying a compound heterozygous mutation (c.823C>T and EX6 del) in the PARK2 gene

    Get PDF
    Mutations in the PARK2 gene, which encodes PARKIN, are the most frequent cause of autosomal recessive Parkinson's disease (PD). We report the generation of an induced pluripotent stem cell (iPSC) line from a 78-year-old patient carrying a compound heterozygous mutation (c.823C>T and EX6del) in the PARK2 gene. Skin fibroblasts were reprogrammed using the non-integrating Sendai virus technology to deliver OCT3/4, SOX2, c-MYC and KLF4 factors. The generated cell line CSC-44 exhibits expression of common pluripotency markers, in vitro differentiation into the three germ layers and normal karyotype. This iPSC line can be used to explore the association between PARK2 mutations and PD.‘Cell Line and DNA Biobank from Patients affected by Genetic Diseases’ (Istituto G. Gaslini, Genova, Italy) and the ‘Parkinson Institute Biobank, members of the Telethon Network of Genetic Biobanks (http://biobanknetwork.telethon.it; project no. GTB12001) funded by Telethon Italy, for providing fibroblasts samples. This work was supported by the Strategic Research Environment MultiPark at Lund University and the strong research environment BAGADILICO (grant 349-2007-8626), the Swedish Parkinson Foundation (Parkinsonfonden; grant 889/16), the Swedish Research Council (grant 2015-03684 to LR) and Finnish Cultural Foundation (grant 00161167 to YP). We also acknowledge the Portuguese Foundation for Science and Technology for the doctoral fellowshipinfo:eu-repo/semantics/publishedVersio
    • …
    corecore