51 research outputs found

    Integrated 3D Acid Fracturing Model for Carbonate Reservoir Stimulation

    Get PDF
    Acid fracturing is one of the stimulation methods used in carbonate formations and has been proved effective and economical. Because of the stochastic nature of acidizing in carbonate formation, designing and optimizing acid fracture treatment today still remain challenging. In the past, a simple acid fracture conductivity correlation was usually considered sufficient to estimate the overall average fracture conductivity in the formation, leading to the computation of the productivity index for fractured well performance. However, the nature of heterogeneity could not be included in the modeling. Understanding the important role of heterogeneity to stimulation performance becomes a crucial step in design and optimization of acid fracture jobs. In order to study the effect of this stochastic nature on acid fracturing, a fully 3D acid reaction model was developed based on the geostatistical parameters of the formation. It is possible to describe local conductivity distribution related to acid transport and reaction process. In this study, we have developed a new interactive workflow allowing the model of the fracture propagation process, the acid etching process and the well production interactively. This thesis presents the novel approach in integrating fracture propagation, acid transport and dissolution, and well performance models in a seamless fashion for acid fracturing design. In this new approach, the fracture geometry data of a hydraulic fracture is first obtained from commercial models of hydraulic fracture propagation, and then the 3D acid fracture model simulates acid etching and transport from the fracture propagation model using the width distribution as the initial condition. We then calculate the fracture conductivity distribution along the created fracture considering the geostatistical parameters such as permeability correlation length and standard deviation in permeability of the formation. The final step of the approach is to predict well performance after stimulation with a reservoir flow simulator. The significant improvements of the new approach are two folds: (1) capturing the geostatistical effect of the formation; and (2) modeling the acid etching and transport more accurately. The thesis explains the methodology and illustrates the application of the approach with examples. The results from this study show that the new model can successfully design and optimize acid fracturing treatments

    Fenretinide induces mitochondrial ROS and inhibits the mitochondrial respiratory chain in neuroblastoma

    Get PDF
    Fenretinide induces apoptosis in neuroblastoma by induction of reactive oxygen species (ROS). In this study, we investigated the role of mitochondria in fenretinide-induced cytotoxicity and ROS production in six neuroblastoma cell lines. ROS induction by fenretinide was of mitochondrial origin, demonstrated by detection of superoxide with MitoSOX, the scavenging effect of the mitochondrial antioxidant MitoQ and reduced ROS production in cells without a functional mitochondrial respiratory chain (Rho zero cells). In digitonin-permeabilized cells, a fenretinide concentration-dependent decrease in ATP synthesis and substrate oxidation was observed, reflecting inhibition of the mitochondrial respiratory chain. However, inhibition of the mitochondrial respiratory chain was not required for ROS production. Co-incubation of fenretinide with inhibitors of different complexes of the respiratory chain suggested that fenretinide-induced ROS production occurred via complex II. The cytotoxicity of fenretinide was exerted through the generation of mitochondrial ROS and, at higher concentrations, also through inhibition of the mitochondrial respiratory chain

    Contribution of copy number variants (CNVs) to congenital, unexplained intellectual and developmental disabilities in Lebanese patients

    Get PDF
    International audienceBackground: Chromosomal microarray analysis (CMA) is currently the most widely adopted clinical test for patients with unexplained intellectual disability (ID), developmental delay (DD), and congenital anomalies. Its use has revealed the capacity to detect copy number variants (CNVs), as well as regions of homozygosity, that, based on their distribution on chromosomes, indicate uniparental disomy or parental consanguinity that is suggestive of an increased probability of recessive disease. Results: We screened 149 Lebanese probands with ID/DD and 99 healthy controls using the Affymetrix Cyto 2.7 M and SNP6.0 arrays. We report all identified CNVs, which we divided into groups. Pathogenic CNVs were identified in 12.1% of the patients. We review the genotype/phenotype correlation in a patient with a 1q44 microdeletion and refine the minimal critical regions responsible for the 10q26 and 16q monosomy syndromes. Several likely causative CNVs were also detected, including new homozygous microdeletions (9p23p24.1, 10q25.2, and 8p23.1) in 3 patients born to consanguineous parents, involving potential candidate genes. However, the clinical interpretation of several other CNVs remains uncertain, including a microdeletion affecting ATRNL1. This CNV of unknown significance was inherited from the patient's unaffected-mother; therefore, additional ethnically matched controls must be screened to obtain enough evidence for classification of this CNV. Conclusion: This study has provided supporting evidence that whole-genome analysis is a powerful method for uncovering chromosomal imbalances, regardless of consanguinity in the parents of patients and despite the challenge presented by analyzing some CNVs

    Genome-wide association study identifies 74 loci associated with educational attainment

    Get PDF
    Educational attainment is strongly influenced by social and other environmental factors, but genetic factors are estimated to account for at least 20% of the variation across individuals1. Here we report the results of a genome-wide association study (GWAS) for educational attainment that extends our earlier discovery sample1,2 of 101,069 individuals to 293,723 individuals, and a replication study in an independent sample of 111,349 individuals from the UK Biobank. We identify 74 genome-wide significant loci associated with the number of years of schooling completed. Single-nucleotide polymorphisms associated with educational attainment are disproportionately found in genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, especially during the prenatal period, and enriched for biological pathways involved in neural development. Our findings demonstrate that, even for a behavioural phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable associated genetic variants that suggest biologically relevant pathways. Because educational attainment is measured in large numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to characterize the genetic influences of related phenotypes, including cognition and neuropsychiatric diseases

    Biomaterials for the treatment of Alzheimer’s disease

    Get PDF
    Alzheimer’s disease (AD) as a progressive and fatal neurodegenerative disease represents a huge unmet need for treatment. The low efficacy of current treatment methods is not only due to low drug potency but also due to the presence of various obstacles in the delivery routes. One of the main barriers is the blood–brain barrier. The increasing prevalence of AD and the low efficacy of current therapies have increased the amount of research on unraveling of disease pathways and development of treatment strategies. One of the interesting areas for the latter subject is biomaterials and their applications. This interest originates from the fact that biomaterials are very useful for the delivery of therapeutic agents, such as drugs, proteins, and/or cells, in order to treat diseases and regenerate tissues. Recently, manufacturing of nano-sized delivery systems has increased the efficacy and delivery potential of biomaterials. In this article, we review the latest developments with regard to the use of biomaterials for the treatment of AD, including nanoparticles and liposomes for delivery of therapeutic compounds and scaffolds for cell delivery strategies

    Leachable poly(trimethylene carbonate)/CaCO3 composites for additive manufacturing of microporous vascular structures

    Get PDF
    The aim of this work was to fabricate microporous poly(trimethylene carbonate) (PTMC) vascular structures by stereolithography (SLA) for applications in tissue engineering and organ models. Leachable CaCO3 particles with an average size of 0.56 μm were used as porogens. Composites of photocrosslinkable PTMC and CaCO3 particles were cast on glass plates, crosslinked by ultraviolet light treatment and leached in watery HCl solutions. In order to obtain interconnected pore structures, the PTMC/CaCO3 composites had to contain at least 30 vol % CaCO3. Leached PTMC films had porosities ranging from 33% to 71% and a pore size of around 0.5 μm. The mechanical properties of the microporous PTMC films matched with those of natural blood vessels. Resins based on PTMC/CaCO3 composites with 45 vol % CaCO3 particles were formulated and successfully used to build vascular structures of various shapes and sizes by SLA. The intrinsic permeabilities of the microporous PTMC films and vascular structures were at least one order of magnitude higher than reported for the extracellular matrix, indicating no mass transfer limitations in the case of cell seeding

    Pseudoxanthoma-elasticum-like papillary dermal elastolysis: a new case.

    No full text
    We report the clinicopathological features of an old woman with a recent and progressive development of soft white-yellow papules of the neck and supraclavicular areas reminding of pseudoxanthoma elasticum without systemic involvement. The similarity of this entity with fibroelastopathic papular dermatoses of the neck is briefly discussed

    Advanced polymer-based composites and structures for biomedical applications

    Get PDF
    A fast increasing demand of medical products based on biomaterials and tissue engineering has led to an extensive growth in biomedical research in the past two decades. A highly interesting class of biomaterials are polymer-based composites, which nowadays are widely used in biomedical applications due to their outstanding physical and mechanical properties. In this paper, we aim to summarize the advancement in polymer-based composites with regard to their properties, structure and fabrication using different techniques. Bioactive polymer-based composites, such as bone-forming, electrically conductive, magnetic, bactericidal and oxygen-releasing materials, as well as non-bioactive polymer-based composites containing reinforcing fillers and porogens are discussed. Amongst others, scaffold structures fabricated by particle leaching, electrospinning and additive manufacturing are described. In each section, significant and recent advances of polymer-based composites in biomedical applications are addressed
    corecore