547 research outputs found
Detection of water vapor in the terrestrial planet forming region of a transition disk
We report a detection of water vapor in the protoplanetary disk around DoAr
44 with the Texas Echelon Cross Echelle Spectrograph --- a visitor instrument
on the Gemini north telescope. The DoAr 44 disk consists of an optically thick
inner ring and outer disk, separated by a dust-cleared 36 AU gap, and has
therefore been termed "pre-transitional". To date, this is the only disk with a
large inner gap known to harbor detectable quantities of warm (T=450 K) water
vapor. In this work, we detect and spectrally resolve three mid-infrared pure
rotational emission lines of water vapor from this source, and use the shapes
of the emission lines to constrain the location of the water vapor. We find
that the emission originates near 0.3 AU --- the inner disk region. This
characteristic region coincides with that inferred for both optically thick and
thin thermal infrared dust emission, as well as rovibrational CO emission. The
presence of water in the dust-depleted region implies substantial columns of
hydrogen (>10^{22} cm-2) as the water vapor would otherwise be destroyed by
photodissociation. Combined with the dust modeling, this column implies a
gas/small-dust ratio in the optically thin dusty region of >1000. These results
demonstrate that DoAr 44 has maintained similar physical and chemical
conditions to classical protoplanetary disks in its terrestrial-planet forming
regions, in spite of having formed a large gap.Comment: Paper accepted to the Astrophysical Journal Letter
Results from a VLT-ISAAC survey of ices and gas around young stellar objects
General results from a 3-5 micron spectroscopic survey of nearby low-mass
young stellar objects are presented. L and M-band spectra have been obtained of
\~50 low mass embedded young stars using the ISAAC spectrometer mounted on
UT1-Antu at Paranal Observatory. For the first time, a consistent census of the
CO, H2O ices and the minor ice species CH3OH and OCN- and warm CO gas present
around young stars is obtained, using large number statistics and resolving
powers of up to R=10000. The molecular structure of circumstellar CO ices, the
depletion of gaseous CO onto grains in protoplanetary disks, the presence of
hot gas in the inner parts of circumstellar disks and in outflows and infalls
are studied. Furthermore, the importance of scattering effects for the
interpretation of the spectra have been addressed.Comment: To appear in the proceedings of the conference "Chemistry as a
Diagnostic of Star Formation", University of Waterloo, Canada, 21-23 August
200
AKARI observations of ice absorption bands towards edge-on young stellar objects
To investigate the composition and evolution of circumstellar ice around low-mass young stellar objects (YSOs), we observed ice absorption bands in the near infrared (NIR) towards eight YSOs ranging from class 0 to class II, among which seven are associated with edge-on disks. We performed slit-less spectroscopic observations using the grism mode of the InfraRed Camera (IRC) on board AKARI, which enables us to obtain full NIR spectra from 2.5 mu m to 5 mu m, including the CO2 band and the blue wing of the H2O band, which are inaccessible from the ground. We developed procedures to carefully process the spectra of targets with nebulosity. The spectra were fitted with polynomial baselines to derive the absorption spectra. The molecular absorption bands were then fitted with the laboratory database of ice absorption bands, considering the instrumental line profile and the spectral resolution of the grism dispersion element. Towards the class 0-I sources (L1527, IRC-L1041-2, and IRAS 04302), absorption bands of H2O, CO2, CO, and XCN are clearly detected. Column density ratios of CO2 ice and CO ice relative to H2O ice are 21-28% and 13-46%, respectively. If XCN is OCN-, its column density is as high as 2-6% relative to H2O ice. The HDO ice feature at 4.1 mu m is tentatively detected towards the class 0-I sources and HV Tau. Non-detections of the CH-stretching mode features around 3.5 mu m provide upper limits to the CH3OH abundance of 26% (L1527) and 42% (IRAS 04302) relative to H2O. We tentatively detect OCS ice absorption towards IRC-L1041-2. Towards class 0-I sources, the detected features should mostly originate in the cold envelope, while CO gas and OCN-could originate in the region close to the protostar, where there are warm temperatures and UV radiation. We detect H2O ice band towards ASR41 and 2MASSJ 1628137-243139, which are edge-on class II disks. We also detect H2O ice and CO2 ice towards HV Tau, HK Tau, and UY Aur, and tentatively detect CO gas features towards HK Tau and UY Aur
Maximum Acceptable Vibrato Excursion as a Function of Vibrato Rate in Musicians and Non-musicians
Human vibrato is mainly characterized by two parameters: vibrato extent and vibrato rate. These parameters have been found to exhibit an interaction both in physical recordings of singersâ voices and in listenerâs preference ratings. This study was concerned with the way in which the maximum acceptable vibrato excursion varies as a function of vibrato rate in normal-hearing (NH) musicians and non-musicians. Eight NH musicians and six non-musicians adjusted the maximum vibrato excursion of a synthesized vowel for vibrato rates between 3 and 8 Hz. Individual thresholds varied across vibrato rate and, in most listeners, exhibited a peak at medium vibrato rates (5â7 Hz). Large across-subject variability was observed, and no significant effect of musical experience was found. Overall, most listeners were not solely sensitive to the vibrato excursion and there was a listener-dependent rate for which larger vibrato excursions were favored. The observed interaction between maximum excursion thresholds and vibrato rate may be due to the listenersâ judgments relying on cues provided by the rate of frequency changes (RFC) rather than excursion per se. Further studies are needed to evaluate the contribution of the RFC to vibrato perception and the possible effects of age and hearing impairment
Observational Constraints on Submillimeter Dust Opacity
Infrared extinction maps and submillimeter dust continuum maps are powerful probes of the density structure in the envelope of star-forming cores. We make a direct comparison between infrared and submillimeter dust continuum observations of the low-mass Class 0 core, B335, to constrain the ratio of submillimeter to infrared opacity (Îș_(smm)/Îș_(ir)) and the submillimeter opacity power-law index (Îș â λâÎČ). Using the average value of theoretical dust opacity models at 2.2 ÎŒm, we constrain the dust opacity at 850 and 450 ÎŒm. Using new dust continuum models based upon the broken power-law density structure derived from interferometric observations of B335 and the infall model derived from molecular line observations of B335, we find that the opacity ratios are ^Îș_(850)_Îș_(2.2) = (3.21 - 4.80)^(+0.44)_(-0.30) x 10^(-4) ^Îș_(450)_Îș(2.0) = (12.8-24.8)^(+2.4)_(-1.3) x 10^(-4) with a submillimeter opacity power-law index of ÎČ_(smm) = (2.18-2.58)^(+0.30)_(â0.30). The range of quoted values is determined from the uncertainty in the physical model for B335. For an average 2.2 ÎŒm opacity of 3800 ± 700 cm^2 g^(â1), we find a dust opacity at 850 and 450 ÎŒm of Îș_(850) = (1.18-1.77)^9+0.36)_(â0.24) and Îș_(450) = (4.72-9.13)^(+1.9)_(â0.98) cm^2 g^(â1) of dust. These opacities are from (0.65-0.97)Îș^(OH5)_(850) of the widely used theoretical opacities of Ossenkopf and Henning for coagulated ice grains with thin mantles at 850 ÎŒm
Infrared spectroscopy of solid CO-CO2 mixtures and layers
The spectra of pure, mixed and layered CO and CO2 ices have been studied
systematically under laboratory conditions using infrared spectroscopy. This
work provides improved resolution spectra (0.5 cm-1) of the CO2 bending and
asymmetric stretching mode, as well as the CO stretching mode, extending the
existing Leiden database of laboratory spectra to match the spectral resolution
reached by modern telescopes and to support the interpretation of the most
recent data from Spitzer. It is shown that mixed and layered CO and CO2 ices
exhibit very different spectral characteristics, which depend critically on
thermal annealing and can be used to distinguish between mixed, layered and
thermally annealed CO-CO2 ices. CO only affects the CO2 bending mode spectra in
mixed ices below 50K under the current experimental conditions, where it
exhibits a single asymmetric band profile in intimate mixtures. In all other
ice morphologies the CO2 bending mode shows a double peaked profile, similar to
that observed for pure solid CO2. Conversely, CO2 induces a blue-shift in the
peak-position of the CO stretching vibration, to a maximum of 2142 cm-1 in
mixed ices, and 2140-2146 cm-1 in layered ices. As such, the CO2 bending mode
puts clear constraints on the ice morphology below 50K, whereas beyond this
temperature the CO2 stretching vibration can distinguish between initially
mixed and layered ices. This is illustrated for the low-mass YSO HH46, where
the laboratory spectra are used to analyse the observed CO and CO2 band
profiles and try to constrain the formation scenarios of CO2.Comment: Accepted in A&
Quantification of segregation dynamics in ice mixtures
(Abridged) The observed presence of pure CO2 ice in protostellar envelopes is
attributed to thermally induced ice segregation, but a lack of quantitative
experimental data has prevented its use as a temperature probe. Quantitative
segregation studies are also needed to characterize diffusion in ices, which
underpins all ice dynamics and ice chemistry. This study aims to quantify the
segregation mechanism and barriers in different H2O:CO2 and H2O:CO ice mixtures
covering a range of astrophysically relevant ice thicknesses and mixture
ratios. The ices are deposited at 16-50 K under (ultra-)high vacuum conditions.
Segregation is then monitored at 23-70 K as a function of time, through
infrared spectroscopy. Thin (8-37 ML) H2O:CO2/CO ice mixtures segregate
sequentially through surface processes, followed by an order of magnitude
slower bulk diffusion. Thicker ices (>100 ML) segregate through a fast bulk
process. The thick ices must therefore be either more porous or segregate
through a different mechanism, e.g. a phase transition. The segregation
dynamics of thin ices are reproduced qualitatively in Monte Carlo simulations
of surface hopping and pair swapping. The experimentally determined
surface-segregation rates for all mixture ratios follow the Ahrrenius law with
a barrier of 1080[190] K for H2O:CO2 and 300[100] K for H2O:CO mixtures. During
low-mass star formation H2O:CO2 segregation will be important already at 30[5]
K. Both surface and bulk segregation is proposed to be a general feature of ice
mixtures when the average bond strengths of the mixture constituents in pure
ice exceeds the average bond strength in the ice mixture.Comment: Accepted for publication in A&A. 25 pages, including 13 figure
Emission from Water Vapor and Absorption from Other Gases at 5-7.5 Microns in Spitzer-IRS Spectra of Protoplanetary Disks
We present spectra of 13 T Tauri stars in the Taurus-Auriga star-forming
region showing emission in Spitzer Space Telescope Infrared Spectrograph (IRS)
5-7.5 micron spectra from water vapor and absorption from other gases in these
stars' protoplanetary disks. Seven stars' spectra show an emission feature at
6.6 microns due to the nu_2 = 1-0 bending mode of water vapor, with the shape
of the spectrum suggesting water vapor temperatures > 500 K, though some of
these spectra also show indications of an absorption band, likely from another
molecule. This water vapor emission contrasts with the absorption from warm
water vapor seen in the spectrum of the FU Orionis star V1057 Cyg. The other
six of the thirteen stars have spectra showing a strong absorption band,
peaking in strength at 5.6-5.7 microns, which for some is consistent with
gaseous formaldehyde (H2CO) and for others is consistent with gaseous formic
acid (HCOOH). There are indications that some of these six stars may also have
weak water vapor emission. Modeling of these stars' spectra suggests these
gases are present in the inner few AU of their host disks, consistent with
recent studies of infrared spectra showing gas in protoplanetary disks.Comment: 33 pages, 9 figures, to appear in the 20 August, 2014, V791 - 2 issue
of the Astrophysical Journa
Recommended from our members
Associations Between Hearing Performance and Physiological Measures - An Overview and Outlook
The current paper summarises the research investigating associations between physiological data and hearing performance. An overview of state-of-the-art research and literature is given as well as promising directions for associations between physiological data and data regarding hearing loss and hearing performance. The physiological parameters included in this paper are: electrodermal activity, heart rate variability, blood pressure, blood oxygenation and respiratory rate. Furthermore, the environmental and behavioural measurements of physical activity and body mass index, alcohol consumption and smoking have been included. So far, only electrodermal activity and heart rate variability are physiological signals simultaneously associated with hearing loss or hearing performance. Initial findings suggest blood pressure and respiratory rate to be the most promising physiological measures that relate to hearing loss and hearing performance
Desorption of CO and O2 interstellar ice analogs
Solid O2 has been proposed as a possible reservoir for oxygen in dense clouds
through freeze-out processes. The aim of this work is to characterize
quantitatively the physical processes that are involved in the desorption
kinetics of CO-O2 ices by interpreting laboratory temperature programmed
desorption (TPD) data. This information is used to simulate the behavior of
CO-O2 ices under astrophysical conditions. The TPD spectra have been recorded
under ultra high vacuum conditions for pure, layered and mixed morphologies for
different thicknesses, temperatures and mixing ratios. An empirical kinetic
model is used to interpret the results and to provide input parameters for
astrophysical models. Binding energies are determined for different ice
morphologies. Independent of the ice morphology, the desorption of O2 is found
to follow 0th-order kinetics. Binding energies and temperature-dependent
sticking probabilities for CO-CO, O2-O2 and CO-O2 are determined. O2 is
slightly less volatile than CO, with binding energies of 912+-15 versus 858+-15
K for pure ices. In mixed and layered ices, CO does not co-desorb with O2 but
its binding energies are slightly increased compared with pure ice whereas
those for O2 are slightly decreased. Lower limits to the sticking probabilities
of CO and O2 are 0.9 and 0.85, respectively, at temperatures below 20K. The
balance between accretion and desorption is studied for O2 and CO in
astrophysically relevant scenarios. Only minor differences are found between
the two species, i.e., both desorb between 16 and 18K in typical environments
around young stars. Thus, clouds with significant abundances of gaseous CO are
unlikely to have large amounts of solid O2.Comment: 8 pages + 2 pages online material, 8 figures (1 online), accepted by
A&
- âŠ