819 research outputs found

    Constraints on a strong X-ray flare in the Seyfert galaxy MCG-6-30-15

    Get PDF
    We discuss implications of a strong flare event observed in the Seyfert galaxy MCG-6-30-15 assuming that the emission is due to localized magnetic reconnection. We conduct detailed radiative transfer modeling of the reprocessed radiation for a primary source that is elevated above the disk. The model includes relativistic effects and Keplerian motion around the black hole. We show that for such a model setup the observed time-modulation must be intrinsic to the primary source. Using a simple analytical model we then investigate time delays between hard and soft X-rays during the flare. The model considers an intrinsic delay between primary and reprocessed radiation, which measures the geometrical distance of the flare source to the reprocessing sites. The observed time delays are well reproduced if one assumes that the reprocessing happens in magnetically confined, cold clouds.Comment: 4 pages, 2 figures, proceedings of a talk given at the symposium 238 at the IAU General Assembly 200

    Modeling the X-ray fractional variability spectrum of Active Galactic Nuclei using multiple flares

    Get PDF
    Using Monte-Carlo simulations of X-ray flare distributions across the accretion disk of active galactic nuclei (AGN), we obtain modeling results for the energy-dependent fractional variability amplitude. Referring to previous results of this model, we illustrate the relation between the shape of the point-to-point fractional variability spectrum, F_pp, and the time-integrated spectral energy distribution, F_E. The results confirm that the spectral shape and variability of the iron Kalpha line are dominated by the flares closest to the disk center.Comment: 2 pages, 1 figure, conference proceedings of the AGN meeting held in October 2006 in Xi'an, China. To appear in "The Central Engine of Active Galactic Nuclei", ed. L. C. Ho and J.-M. Wang (San Francisco: ASP

    Constraining global parameters of accreting black holes by modeling magnetic flares

    Get PDF
    We present modeling results for the reprocessed radiation expected from magnetic flares above AGN accretion disks. Relativistic corrections for the orbital motion of the flare and for the curved space-time in the vicinity of the black hole are taken into account. We investigate the local emission spectra, as seen in a frame co-orbiting with the disk, and the observed spectra at infinity. We investigate long-term flares at different orbital phases and short-term flares for various global parameters of the accreting black hole. Particular emphasis is put on the relation between the iron Kalpha line and the Compton hump as these two features can be simultaneously observed by the Suzaku satellite and later by Simbol-X.Comment: 4 pages, 1 figure, 1 table, proceedings for a poster at the international conference "The Extreme Universe in the Suzaku Era" held in Kyoto, Japan, December 4-8, 200

    Experimental Demonstration of >230{\deg} Phase Modulation in Gate-Tunable Graphene-Gold Reconfigurable Mid-Infrared Metasurfaces

    Get PDF
    Metasurfaces offer significant potential to control far-field light propagation through the engineering of amplitude, polarization, and phase at an interface. We report here phase modulation of an electronically reconfigurable metasurface and demonstrate its utility for mid-infrared beam steering. Using a gate-tunable graphene-gold resonator geometry, we demonstrate highly tunable reflected phase at multiple wavelengths and show up to 237{\deg} phase modulation range at an operating wavelength of 8.50 {\mu}m. We observe a smooth monotonic modulation of phase with applied voltage from 0{\deg} to 206{\deg} at a wavelength of 8.70 {\mu}m. Based on these experimental data, we demonstrate with antenna array calculations an average beam steering efficiency of 50% for reflected light for angles up to 30{\deg}, relative to an ideal metasurface, confirming the suitability of this geometry for reconfigurable mid-infrared beam steering devices

    Long-term variability of AGN at hard X-rays

    Get PDF
    Variability at all observed wavelengths is a distinctive property of AGN. Hard X-rays provide us with a view of the innermost regions of AGN, mostly unbiased by absorption along the line of sight. Swift/BAT offers the unique opportunity to follow, on time scales of days to years and with a regular sampling, the 14-195 keV emission of the largest AGN sample available up to date for this kind of investigation. We study the amplitude of the variations, and their dependence on sub-class and on energy, for a sample of 110 radio quiet and radio loud AGN selected from the BAT 58-month survey. About 80% of the AGN in the sample are found to exhibit significant variability on months to years time scales, radio loud sources being the most variable. The amplitude of the variations and their energy dependence are incompatible with variability being driven at hard X-rays by changes of the absorption column density. In general, the variations in the 14-24 and 35-100 keV bands are well correlated, suggesting a common origin of the variability across the BAT energy band. However, radio quiet AGN display on average 10% larger variations at 14-24 keV than at 35-100 keV and a softer-when-brighter behavior for most of the Seyfert galaxies with detectable spectral variability on month time scale. In addition, sources with harder spectra are found to be more variable than softer ones. These properties are generally consistent with a variable power law continuum, in flux and shape, pivoting at energies >~ 50 keV, to which a constant reflection component is superposed. When the same time scales are considered, the timing properties of AGN at hard X-rays are comparable to those at lower energies, with at least some of the differences possibly ascribable to components contributing differently in the two energy domains (e.g., reflection, absorption).Comment: 17 pages, 11 figures, accepted for publication in A&

    Editorial: Biogenic Reefs at Risk: Facing Globally Widespread Local Threats and Their Interaction With Climate Change

    Get PDF
    Biogenic reefs are secondary marine substrates, also referred to as bioconstructions or bioherms, made by autogenic ecosystem engineers (sensu, Jones et al., 1994) that provide habitats for various species. Their ecological role goes far beyond simple physical effects because they can modulate many resources and interactions between species inhabiting the reefs. Marine bioconstructions involve a variety of fragile three-dimensional habitats, from shallow water coral reefs to mesophotic coralligenous concretions, hosting rich, and diverse benthic assemblages (Cocito, 2004; Ingrosso et al., 2018; Cerrano et al., 2019). Biogenic reefs can be found from the intertidal to the deep sea; some are ephemeral and last a few years, while others remain active for millennia. The main framework builders are able to form bioconstructions at different latitudes, from tropical to polar zones, and include films of cyanobacteria and diatoms, calcareous rhodophytes, sponges, hermatypic symbiotic and aposymbiotic corals, polychaetes as serpulids and sabellariids, mollusks like vermetids, oysters and mussels, and bryozoans

    Multi-epoch X-ray observations of the Seyfert 1.2 galaxy Mrk 79: bulk motion of the illuminating X-ray source

    Get PDF
    Multi-epoch X-ray spectroscopy (0.3-25 keV) of the Seyfert 1.2 galaxy Mrk 79 (UGC 3973) spanning nearly eight years and a factor of three in broadband flux are analysed. The data are obtained at seven epochs with either XMM-Newton or Suzaku. Comparison with contemporaneous RXTE monitoring indicate that all flux states of Mrk 79 are represented by the data. The spectra are fitted in a self-consistent manner adopting a power law and ionised reflection to describe the broadband continuum. Modification of the spectra by a distant photoionised medium, seen predominantly in emission, are also included. Under the assumption that the inner disk is at the innermost stable circular orbit, our blurred reflection models give a spin of a = 0.7+/-0.1. The reflection component in each spectrum is weaker than predicted by simple reflection models. If the illuminating X-ray emission is produced by flares above the disk that move at mildly relativistic velocities, however, diminished reflection is expected. Light bending due to strong gravity near black holes can influence how the illuminating and reflected flux are observed; variations in Mrk 79 do not suggest that light bending is important in this source.Comment: 13 pages. Accepted for publication in MNRA

    Hard X-ray Morphological and Spectral Studies of The Galactic Center Molecular Cloud Sgr B2: Constraining Past Sgr A* Flaring Activity

    Get PDF
    Galactic Center (GC) molecular cloud Sgr B2 is the best manifestation of an X-ray reflection nebula (XRN) reprocessing a past giant outburst from the supermassive black hole Sgr A*. Alternatively, Sgr B2 could be illuminated by low-energy cosmic ray electrons (LECRe) or protons (LECRp). In 2013, NuSTAR for the first time resolved Sgr B2 hard X-ray emission on sub-arcminute scales. Two prominent features are detected above 10 keV - a newly emerging cloud G0.66-0.13 and the central 90" radius region containing two compact cores Sgr B2(M) and Sgr B2(N) surrounded by diffuse emission. It is inconclusive whether the remaining level of Sgr B2 emission is still decreasing or has reached a constant background level. A decreasing Fe Kα\alpha emission can be best explained by XRN while a constant background emission can be best explained by LECRp. In the XRN scenario, the 3-79 keV Sgr B2 spectrum can well constrain the past Sgr A* outburst, resulting in an outburst spectrum with a peak luminosity of L379 keV5×1038 erg s1L_{3-79\rm~keV} \sim 5\times10^{38} \rm~erg~s^{-1} derived from the maximum Compton-scattered continuum and the Fe Kα\alpha emission consistently. The XRN scenario is preferred by the fast variability of G0.66-0.13, which could be a molecular clump located in the Sgr B2 envelope reflecting the same Sgr A* outburst. In the LECRp scenario, we derived the required CR ion power dW/dt=(14)×1039 erg s1dW/dt=(1-4)\times10^{39}\rm~erg~s^{-1} and the CR ionization rate ζH=(610)×1015 H1 s1\zeta_{H}=(6-10)\times 10^{-15}\rm~H^{-1}~s^{-1}. The Sgr B2 background level X-ray emission will be a powerful tool to constrain GC CR population.Comment: 17 pages, 6 figures, submitted to Ap
    corecore