2,057 research outputs found

    Electron-correlation driven capture and release in double quantum dots

    Get PDF
    We recently predicted that the interatomic Coulombic electron capture (ICEC) process, a long-range electron correlation driven capture process, is achievable in gated double quantum dots (DQDs). In ICEC an incoming electron is captured by one QD and the excess energy is used to remove an electron from the neighboring QD. In this work we present systematic full three-dimensional electron dynamics calculations in quasi-one dimensional model potentials that allow for a detailed understanding of the connection between the DQD geometry and the reaction probability for the ICEC process. We derive an effective one-dimensional approach and show that its results compare very well with those obtained using the full three-dimensional calculations. This approach substantially reduces the computation times. The investigation of the electronic structure for various DQD geometries for which the ICEC process can take place clarify the origin of its remarkably high probability in the presence of two-electron resonances

    Controlled energy-selected electron capture and release in double quantum dots

    Get PDF
    Highly accurate quantum electron dynamics calculations demonstrate that energy can be efficiently transferred between quantum dots. Specifically, in a double quantum dot an incoming electron is captured by one dot and the excess energy is transferred to the neighboring dot and used to remove an electron from this dot. This process is due to long-range electron correlation and shown to be operative at rather large distances between the dots. The efficiency of the process is greatly enhanced by preparing the double quantum dot such that the incoming electron is initially captured by a two-electron resonance state of the system. In contrast to atoms and molecules in nature, double quantum dots can be manipulated to achieve this enhancement. This mechanism leads to a surprisingly narrow distribution of the energy of the electron removed in the process which is explained by resonance theory. We argue that the process could be exploited in practice.Comment: Lette

    A Gaussian process framework for modelling instrumental systematics: application to transmission spectroscopy

    Full text link
    Transmission spectroscopy, which consists of measuring the wavelength-dependent absorption of starlight by a planet's atmosphere during a transit, is a powerful probe of atmospheric composition. However, the expected signal is typically orders of magnitude smaller than instrumental systematics, and the results are crucially dependent on the treatment of the latter. In this paper, we propose a new method to infer transit parameters in the presence of systematic noise using Gaussian processes, a technique widely used in the machine learning community for Bayesian regression and classification problems. Our method makes use of auxiliary information about the state of the instrument, but does so in a non-parametric manner, without imposing a specific dependence of the systematics on the instrumental parameters, and naturally allows for the correlated nature of the noise. We give an example application of the method to archival NICMOS transmission spectroscopy of the hot Jupiter HD 189733, which goes some way towards reconciling the controversy surrounding this dataset in the literature. Finally, we provide an appendix giving a general introduction to Gaussian processes for regression, in order to encourage their application to a wider range of problems.Comment: 6 figures, 1 table, accepted for publication in MNRA

    A transiting planet among 23 new near-threshold candidates from the OGLE survey - OGLE-TR-182

    Get PDF
    By re-processing the data of the second season of the OGLE survey for planetary transits and adding new mesurements on the same fields gathered in subsequent years with the OGLE telescope, we have identified 23 new transit candidates, recorded as OGLE-TR-178 to OGLE-TR-200. We studied the nature of these objects with the FLAMES/UVES multi-fiber spectrograph on the VLT. One of the candidates, OGLE-TR-182, was confirmed as a transiting gas giant planet on a 4-day orbit. We characterised it with further observations using the FORS1 camera and UVES spectrograph on the VLT. OGLE-TR-182b is a typical ``hot Jupiter'' with an orbital period of 3.98 days, a mass of 1.01 +- 0.15 MJup and a radius of 1.13 (+0.24-0.08) RJup. Confirming this transiting planet required a large investment in telescope time with the best instruments available, and we comment on the difficulty of the confirmation process for transiting planets in the OGLE survey. We delienate the zone were confirmation is difficult or impossible, and discuss the implications for the Corot space mission in its quest for transiting telluric planets.Comment: 7 pages, submitted to Astronomy and Astrophysic

    OGLE-TR-211 - a new transiting inflated hot Jupiter from the OGLE survey and ESO LP666 spectroscopic follow-up program

    Get PDF
    We present results of the photometric campaign for planetary and low-luminosity object transits conducted by the OGLE survey in 2005 season (Campaign #5). About twenty most promising candidates discovered in these data were subsequently verified spectroscopically with the VLT/FLAMES spectrograph. One of the candidates, OGLE-TR-211, reveals clear changes of radial velocity with small amplitude of 82 m/sec, varying in phase with photometric transit ephemeris. Thus, we confirm the planetary nature of the OGLE-TR-211 system. Follow-up precise photometry of OGLE-TR-211 with VLT/FORS together with radial velocity spectroscopy supplemented with high resolution, high S/N VLT/UVES spectra allowed us to derive parameters of the planet and host star. OGLE-TR-211b is a hot Jupiter orbiting a F7-8 spectral type dwarf star with the period of 3.68 days. The mass of the planet is equal to 1.03+/-0.20 M_Jup while its radius 1.36+0.18-0.09 R_Jup. The radius is about 20% larger than the typical radius of hot Jupiters of similar mass. OGLE-TR-211b is, then, another example of inflated hot Jupiters - a small group of seven exoplanets with large radii and unusually small densities - objects being a challenge to the current models of exoplanets.Comment: 6 pages. Submitted to Astronomy and Astrophysic

    The spin-orbit angle of the transiting hot jupiter CoRoT-1b

    Full text link
    We measure the angle between the planetary orbit and the stellar rotation axis in the transiting planetary system CoRoT-1, with new HIRES/Keck and FORS/VLT high-accuracy photometry. The data indicate a highly tilted system, with a projected spin-orbit angle lambda = 77 +- 11 degrees. Systematic uncertainties in the radial velocity data could cause the actual errors to be larger by an unknown amount, and this result needs to be confirmed with further high-accuracy spectroscopic transit measurements. Spin-orbit alignment has now been measured in a dozen extra-solar planetary systems, and several show strong misalignment. The first three misaligned planets were all much more massive than Jupiter and followed eccentric orbits. CoRoT-1, however, is a jovian-mass close-in planet on a circular orbit. If its strong misalignment is confirmed, it would break this pattern. The high occurence of misaligned systems for several types of planets and orbits favours planet-planet scattering as a mechanism to bring gas giants on very close orbits.Comment: to appear in in MNRAS letters [5 pages

    Coordinated analysis of two graphite grains from the CO3.0 LAP 031117 meteorite: First identification of a CO Nova graphite and a presolar iron sulfide subgrain

    Get PDF
    Presolar grains constitute remnants of stars that existed before the formation of the solar system. In addition to providing direct information on the materials from which the solar system formed, these grains provide ground-truth information for models of stellar evolution and nucleosynthesis. Here we report the in-situ identification of two unique presolar graphite grains from the primitive meteorite LaPaz Icefield 031117. Based on these two graphite grains, we estimate a bulk presolar graphite abundance of 5-3+7 ppm in this meteorite. One of the grains (LAP-141) is characterized by an enrichment in 12C and depletions in 33,34S, and contains a small iron sulfide subgrain, representing the first unambiguous identification of presolar iron sulfide. The other grain (LAP-149) is extremely 13C-rich and 15N-poor, with one of the lowest 12C/13C ratios observed among presolar grains. Comparison of its isotopic compositions with new stellar nucleosynthesis and dust condensation models indicates an origin in the ejecta of a low-mass CO nova. Grain LAP-149 is the first putative nova grain that quantitatively best matches nova model predictions, providing the first strong evidence for graphite condensation in nova ejecta. Our discovery confirms that CO nova graphite and presolar iron sulfide contributed to the original building blocks of the solar system.Peer ReviewedPostprint (author's final draft

    A Search for Distant Galactic Cepheids Toward l=60

    Get PDF
    We present results of a survey of a 6-square-degree region near l=60, b=0 to search for distant Milky Way Cepheids. Few MW Cepheids are known at distances >~ R_0, limiting large-scale MW disk models derived from Cepheid kinematics; this work was designed to find a sample of distant Cepheids for use in such models. The survey was conducted in the V and I bands over 8 epochs, to a limiting I~=18, with a total of ~ 5 million photometric observations of ~ 1 million stars. We present a catalog of 578 high-amplitude variables discovered in this field. Cepheid candidates were selected from this catalog on the basis of variability and color change, and observed again the following season. We confirm 10 of these candidates as Cepheids with periods from 4 to 8 days, most at distances > 3 kpc. Many of the Cepheids are heavily reddened by intervening dust, some with implied extinction A_V > 10 mag. With a future addition of infrared photometry and radial velocities, these stars alone can provide a constraint on R_0 to 8%, and in conjunction with other known Cepheids should provide good estimates of the global disk potential ellipticity.Comment: 18 pages, 4 tables, 13 figures (LaTeX / AASTeX

    Is Cosmology Solved?

    Get PDF
    We have fossil evidence from the thermal background radiation that our universe expanded from a considerably hotter denser state. We have a well defined and testable description of the expansion, the relativistic Friedmann-Lemaitre model. Its observational successes are impressive but I think hardly enough for a convincing scientific case. The lists of observational constraints and free hypotheses within the model have similar lengths. The scorecard on the search for concordant measures of the mass density parameter and the cosmological constant shows that the high density Einstein-de Sitter model is challenged, but that we cannot choose between low density models with and without a cosmological constant. That is, the relativistic model is not strongly overconstrained, the usual test of a mature theory. Work in progress will greatly improve the situation and may at last yield a compelling test. If so, and the relativistic model survives, it will close one line of research in cosmology: we will know the outlines of what happened as our universe expanded and cooled from high density. It will not end research: some of us will occupy ourselves with the details of how galaxies and other large-scale structures came to be the way they are, others with the issue of what our universe was doing before it was expanding. The former is being driven by rapid observational advances. The latter is being driven mainly by theory, but there are hints of observational guidance.Comment: 13 pages, 3 figures. To be published in PASP as part of the proceedings of the Smithsonian debate, Is Cosmology Solved

    The `666' collaboration on OGLE transits: I. Accurate radius of the planets OGLE-TR-10b and OGLE-TR-56b with VLT deconvolution photometry

    Full text link
    Transiting planets are essential to study the structure and evolution of extra-solar planets. For that purpose, it is important to measure precisely the radius of these planets. Here we report new high-accuracy photometry of the transits of OGLE-TR-10 and OGLE-TR-56 with VLT/FORS1. One transit of each object was covered in Bessel V and R filters, and treated with the deconvolution-based photometry algorithm DECPHOT, to ensure accurate millimagnitude light curves. Together with earlier spectroscopic measurements, the data imply a radius of 1.22 +0.12-0.07 R_J for OGLE-TR-10b and 1.30 +- 0.05 R_J for OGLE-TR-56b. A re-analysis of the original OGLE photometry resolves an earlier discrepancy about the radius of OGLE-TR-10. The transit of OGLE-TR-56 is almost grazing, so that small systematics in the photometry can cause large changes in the derived radius. Our study confirms both planets as inflated hot Jupiters, with large radii comparable to that of HD 209458bb and at least two other recently discovered transiting gas giants.Comment: Fundamental updates compared to previous version; accepted for publication in Astronomy & Astrophysic
    corecore