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We recently predicted that the interatomic Coulombic electron capture (ICEC) process, a long-
range electron correlation driven capture process, is achievable in gated double quantum dots
(DQDs). In ICEC an incoming electron is captured by one QD and the excess energy is used
to remove an electron from the neighboring QD. In this work we present systematic full three-
dimensional electron dynamics calculations in quasi-one dimensional model potentials that allow for
a detailed understanding of the connection between the DQD geometry and the reaction probability
for the ICEC process. We derive an effective one-dimensional approach and show that its results
compare very well with those obtained using the full three-dimensional calculations. This approach
substantially reduces the computation times. The investigation of the electronic structure for vari-
ous DQD geometries for which the ICEC process can take place clarify the origin of its remarkably
high probability in the presence of two-electron resonances.

PACS numbers: 73.21.La, 73.63.Kv, 34.80.Gs, 31.70.Hq

I. INTRODUCTION

The technical ability of producing nanosized materi-
als lead among other achievements to the discovery - and
nowadays the technological application 1 - of semiconduc-
tor (SC) QDs. In these structures some typical features
of SC bulk material are prevailed2–5 and married to typi-
cal atomic properties6–10 emerging from the energy level
quantization11 in the QDs, motivating their name: ar-
tificial atoms.12 DQDs can either be coupled (artificial
molecules6) or uncoupled. The latter arrangement we
consider here for the investigation of an energy transfer
process between QDs.
The electron confinement achieved through different

QD geometries (disc shaped, spherical, wires, double lay-
ered, etc.) presents an interesting variety of electronic
properties that are, however, similar for various kinds
of QDs. Epitaxially-grown self-assembled QDs are most
commonly disc or pyramidally shaped InGaAs islands
onto a GaAs substrate fed through a wetting layer by
free electrons from the substrate.13,14 Vertical stacking
of layers allows to obtain a nanostructure of vertically
arranged DQDs.13,14

In electrostatically defined QDs, a two-dimensional
electron gas is created between two semiconductors with
different gaps. The gas can carry free electrons which can

be further confined using charged metallic gates to define
the regions of one, two or more QDs.6 In the last years the
advances in nanowire fabrication allowed the construc-
tion of QDs inside long nanowires using interlaced layer
of different semiconductors.7 Colloidal nanocrystals can
nowadays be constructed small enough to observe quan-
tization of the electronic levels. They have attracted a lot
of attention in the past few years as materials in modern
third generation solar cells.15,16 In all theses QD struc-
tures the manipulation of the electronic levels of the QDs
is straightforward. Particularly, manipulation of levels
with different spin quantum numbers by magnetic or elec-
tric fields is possible. This allows the study and charac-
terization of transitions between them,4,7,9,10,17–19 which
are an appealing and desirable property in the field of
quantum information.

Many experimental techniques are employed in cur-
rent research to measure the properties of QDs. The
electrical current through QDs can be obtained by trans-
port spectroscopy. Transport on electrostatically de-
fined QDs,6 nanowire based QD structures,7,9 and nan-
otube defined QDs20 is widely used to determine the
level structure inside the QDs. Another important field
of research in various nanostructures is carrier relax-
ation dynamics within excitons after an optical excita-
tion. Pump-probe schemes with time resolution in the
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order of ten of picoseconds can resolve processes such
as electron-phonon interactions,19,21,22 multiple exciton
generation,16 Auger relaxation23 also far-IR relaxation
and relaxation into defects, impurities especially at sur-
faces. The characteristics can be measured by photolu-
minescence spectroscopy4,5,24 and complementary pho-
tocurrent measurements can give information on the non-
radiative decay time and energy of the excitons or intra-
conduction band excited states.4 In the specific case of
DQDs, the transitions and tunneling dynamics of elec-
trons of vertically coupled QDs were studied4 and inter-
dot phonon-relaxation processes were detected between
the QDs. P to S orbital electron relaxation via elec-
tron correlation has also been demonstrated in uncou-
pled n-doped DQDs25–27 and after electric pulse excita-
tion.28 In this case the relaxation in one QD occurs via
energy transfer and emission of an electron in a neigh-
boring QD in a process called intermolecular Coulombic
decay (ICD).25,27,29–32

In the present work we focus on the less intensively
studied capture dynamics of free electrons into n-doped
DQDs mediated solely by long-range electron correla-
tion.33 In general the most important electron cap-
ture mechanism is via emission of longitudinal optical
phonons, that has been studied before in single34,35 and
double QDs.34 It has been analyzed theoretically in single
QDs along with electron collisions and emission.34,36 In
our previous work33 we showed for the first time that elec-
tron capture can as well be mediated efficiently by long-
range electron correlation in the interatomic Coulom-
bic electron capture (ICEC) in DQDs. The process was
named after the one originally predicted to be operative
in atoms and molecules.37,38 In atoms the electron cap-
ture by one atom occurs while another electron is emitted
from an atom into its environment. In DQDs the elec-
tron capture by one QD leads to an emission of electrons
from neighboring QDs with controlled energy properties
that can be tuned by changing the geometric DQD pa-
rameters.33 We postulated ICEC for n-doped DQDs em-
bedded in nanowires (Fig. 1) using an effective mass ap-
proximation (EMA)39 based model potential in which we
performed numerically exact electron dynamics calcula-
tions. The relaxation dynamics of an excitonic electron
in undoped materials can be described within the same
model provided that the hole relaxation to the band edge
has been faster than that of the electron.23

In this manuscript the ICEC probability is given as a
function of the incoming electron energy. We can think
of two of the above described experimental setups to test
our results. In transport spectroscopy experiments in
wires or confined 2D electron gases, current from ICEC
could be detected as a contribution in the Coulomb block-
ade region of the differential conductance7. Another ex-
perimental setup proposes an excitation in the wire gen-
erated by a localized laser pulse, this has been proposed
as an initial state for similar phonon induced capture
processes34. A pump-probe scheme4 or quantum point
contacts7 could be used to follow the capture and emis-

sion dynamics.
We showed already that the probability for ICEC is

non-negligible 33 and can be greatly enhanced in the pres-
ence of two-electron resonance states that are capable of
undergoing fast ICD-related energy transfer. Here, we
systematically add other DQD configurations to those
studied before and analyze how and for which energies in
the different configurations ICEC in the general and the
resonance case becomes most effective.
The paper is organized as follows: First we present

some general considerations on the ICEC process (II), in-
troduce our model and the DQD electronic structure (III)
followed by the electron dynamics methods used (IV)
and the results (V). Since numerically exact computa-
tions in the full six-dimensional Hilbert space are very
time consuming, we additionally include an effective two-
dimensional description of the nanowires and compare to
the full dimensional results (VB 4). The discussion of
the results using realistic semiconductor parameters are
given in (VI) followed by the conclusions (VII).

II. CONDITIONS FOR ICEC IN DQDS

In this work we consider a system of two fully corre-
lated electrons and two QDs which we call the left and
right QD and which are described by two different model
potentials (see Fig. 2). For the time being consider a left
potential well that supports only a single one-electron
level L0 with energy EL0 and a right one with one single-
electron level R0 with energy ER0 such that EL0 6= ER0 .
The tunneling and hybridization between L0 and R0 in
the DQD is vanishingly small due to the long interdot
distance R of the considered system. The ICEC process
occurs as depicted in Fig. 2 where an electron is initially
bound to the right QD and another electron with mo-
mentum pi is coming in from the left side of the DQD.
The incoming electron can then be captured into the L0

ground state of the left QD while the electron on the
right is emitted from the R0 ground state of the right
QD. Energy conservation dictates that the total energy
of the system ET

(in) ET = εi + ER0 (1)

(out) ET = εf + EL0 , (2)

is conserved38 and the kinetic energy acquired by the
outgoing electron can be expressed as

εf − εi = ∆E (3)

with the corresponding momentum

pf =
√

p2i + 2m∗∆E (4)

where εi,f = p2i,f/2m
∗, ∆E = ER0 − EL0 and m∗ is the

electron effective mass in atomic units. As one can notice
from Eq. (4) the emitted electron can have a higher or
a lower momentum than the initial electron, depending
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Figure 1. (Color online) Schematic view of two experimental
setups to achieve the electron confinement inside a nanowire.
In panel (a) a 3D confinement is obtained using a layered
semiconductor structure, in (b) the nanowire is built of a sin-
gle semiconductor material and the barriers are obtained by
electrostatic depletion (areas indicated with green shading).
The depletion is achieved by setting different electrostatic po-
tential energies in the metallic gates below the wire.

on the relation between the bound-state energies ER0

and EL0 . However, for negative values of ∆E the ICEC
channel is closed if the incoming electron energy is lower
than |∆E| (see Eq. (4)). Note also that since ∆E is the
energy acquired by the outgoing electron, then −∆E is
conversely the energy gain/loss suffered by the DQD.

III. MODEL

The motion of two electrons inside a nanostructured
semiconductor can be accurately described using a few-
electron effective mass model potential39 in which elec-
tron dynamics calculations are feasible. This approach
offers then straightforward observability of how electron
correlation can lead to ICEC in general two-site systems
where electron correlation between moieties plays a fun-
damental role as well as in the specific case of a QD. We
adopt here the model for the DQD used previously to
study the dynamics of ICEC33,40 and ICD.25,26,28 The
dots are represented by two Gaussian wells aligned in z

Figure 2. (Color online) Schematic view of the interatomic
Coulombic electron capture for a double quantum dot. The
effective mass approximation is used to describe the quantum
dots as two potential wells. The capture of the incoming
electron by the left dot (dashed green state) is mediated by
its correlation with the electron initially bound to the right
dot (full green state). While the electron is captured in the
left dot, the electron on the right is excited into the continuum
and becomes an outgoing electron.

direction. In x and y direction we assume a strong har-
monic confinement which could be attributed either to
depleting gates2 or to the actual structure of the semi-
conductor.7 Besides the full three-dimensional calcula-
tions we also considered a simpler one-dimensional model
that uses an effective electron-electron interaction to take
the wire shape of the system in x and y direction im-
plicitly into account. In this one-dimensional effective
model electron dynamics calculations are much more ef-
ficient because only the z coordinates of the electrons are
evolved in time.

A. Hamiltonian

The two-electron effective mass Hamiltonian for the
system is

H(r1, r2) = h(r1) + h(r2) +
1

εr |r1 − r2|
(5)

where εr is the relative dielectric permittivity and

h(ri) = − 1

2m∗
∇2

i + Vc(xi, yi) + Vl(zi) (6)

is a one-electron Hamiltonian in which

Vc(xi, yi) =
1

2
m∗ω2(xi + yi)

2 (7)

Vl(zi) = −VLe−bL(zi+R/2)2 − VRe
−bR(zi−R/2)2 (8)

are the transversal confinement and longitudinal open
potentials, respectively. m∗ is the effective mass, R is



4

Parameter Scaled value

H (or E) m∗

ε2r
H

m∗ 1

εr 1

ω ω

R εr
m∗ R

(bL, bR)
εr
m∗ (bL, bR)

(VL, VR)
ε2r
m∗ (VL, VR)

Table I. Scaling of the Hamiltonian and parameters under the
transformation ri → εr

m∗ ri.

the distance between the QDs and bL,R are the sizes of
the left and right QD while VL,R their depths. Perform-
ing the scaling ri → εr

m∗ ri of the electronic coordinates
one can obtain the scaling relationships of the Hamilto-
nian parameters shown in Tab. I. Clearly, we can use
the effective mass and the relative permittivity equal to
one and rescale the parameters afterwards to obtain the
energies and distances for a specific semiconductor.
Due to the comparably strong confinement (ω = 1.0

a.u. > VL,R) the excited states relevant to this study are
only in z direction. We will correspondingly have a level
structure Ln(Rn), n = 0, 1, . . . in the left (right) QD with
energies ELn(ERn). The orbital symmetry is simply that
of a symmetric well: L0 corresponds to an S-symmetry
around the left dot, L1 to a P-symmetry and so on.

B. Effective one-dimensional approach

As mentioned in Sec. III A the system under consider-
ation has a strong lateral confinement. It is then possible
to construct an effective one-dimensional Hamiltonian41

using the wave function separation ansatz

Ψ(r1, r2) = ψ(z1, z2)φ0(x1, y1)φ0(x2, y2), (9)

where φ0 are two-dimensional single-electron ground
state functions and ψ(z1, z2) is the longitudinal effec-
tive wave function. Since essentially the same results are
obtained for singlet and triplet states, we chose triplet
symmetry throughout our study. Ψ has the proper sym-
metry under exchange of electrons given by the longitu-
dinal wave function Π̂1↔ 2ψ(z1, z2) = −ψ(z2, z1). The
one-dimensional Hamiltonian can be deduced from the
analysis of the expectation value of the full Hamiltonian
with the product wave function of Eq. (9)

〈Ψ |H |Ψ〉 = 2ω −
∑

i=1,2

〈

ψ

∣

∣

∣

∣

1

2m∗
i

∂2

∂z2i
+ Vlong(zi)

∣

∣

∣

∣

ψ

〉

+

1

εr

〈

Ψ

∣

∣

∣

∣

1

|r1 − r2|

∣

∣

∣

∣

Ψ

〉

. (10)

The last term can be explicitly written in the form

〈

Ψ
∣

∣

∣

1
|r1−r2|

∣

∣

∣
Ψ
〉

=

∫ ∫ |Ψ(r1, r2)|2
|r1 − r2|

dr31dr
3
2

=

∫ ∫

|ψ(z1, z2)|2 Veff (z12)dz1dz2, (11)

with the squared longitudinal wave function and the ef-
fective z-potential

Veff (z12) =

√

π

2

1

l
eζ

2

(1− erf(ζ)) , (12)

which depends on z12 = |z1 − z2|, the variable remaining
after integrating over the x and y coordinates.
The size of the two-dimensional ground state wave

function is given by l =
√

〈φ0 |x2|φ0〉 =
√

1/m∗ω and

ζ = z12/
√
2 l is the distance z12 between the electrons in

terms of the confinement size l. The asymptotic behavior
of Veff (z12) exhibits a Coulombic decay behavior at large
electron separation. However, at small distances between
the electrons this effective potential does not diverge at
z1 = z2 which is beneficial for numerical treatments:

Veff (z12)
∣

∣

∣

z12→∞
−→ 1

z12

(

1− l2

(z12)
2

)

(13)

Veff (z12)|z12→0 −→ 1

l

(
√

π

2
− z12

l
+ · · ·

)

(14)

The validity of the effective potential in different con-
finement regimes was studied in [41] for double QDs as a
function of the distance R between QDs. From Eq. (13)
we see that l/z12 defines the correction order of the effec-
tive interaction at large distances. If we take the distance
between the dots R as a measure of the closest distance
that electrons will be from each other, then z12/l ≈ R/l.
We realize then from Eq. (13) that in the regime studied
in this work (l ≈ 1 and R ≈ 10), the electrons are al-
ready in the asymptotic regime of the effective potential.
Notice also that the peak at z1 = z2 scales as 1/l (see
Eq. (14)) indicating that in truly narrow confinements
(l → 0) there is less room for the electrons to avoid the
divergence of the Coulomb interaction.

IV. COMPUTATIONAL DETAILS

The dynamical evolution of the system was obtained by
solving the time-dependent electronic Schrödinger equa-
tion employing the multiconfiguration time-dependent
Hartree (MCTDH) approach.42,43 The triplet wave func-
tion

Ψ(r1, r2, t) =

n
∑

i,j

Aij(t)ϕi(r1, t)ϕj(r2, t), (15)



5

was expanded in time-dependent single particle functions
ϕi(r, t) (SPFs) and coefficients Aij(t) that fulfill the anti-
symmetry condition Aij(t) = −Aji(t) for all times. The
Dirac-Frenkel variational principle44,45

〈

δΨ

∣

∣

∣

∣

H − i
∂

∂t

∣

∣

∣

∣

Ψ

〉

= 0 (16)

was used to obtain the equations of motion for the coef-
ficients and SPFs.
They were efficiently solved using a constant mean field

approach as implemented in the MCTDH-Heidelberg
package.43,46 The convergence of numerical results was
ensured by monitoring the population of the least popu-
lated SPF. This is reasonable because the SPFs are adap-
tive in time and are optimized to describe Ψ(r1, r2, t)
with the least possible number of SPFs.
The multimode SPFs ϕi(rq, t) were in turn expanded

in one-dimensional time-dependent SPFs for each of the
Cartesian coordinates (x, y, z) as

ϕi(rq, t) =
∑

lmn

C
(q)
lmn(t)χ

(x)
l (xq , t)χ

(y)
m (yq, t)χ

(z)
n (zq, t).

(17)
These one-dimensional SPFs χl are expanded on a

DVR-grid (discrete variable representation). We chose
harmonic oscillator DVRs for the x and y, and a sine
DVR for the z coordinate as listed in Tab. II.
In the full 3D calculations the Coulomb potential was

regularized as 1/r12 → 1/
√

r212 + a2 with a = 0.01 to
prevent divergences at r1 = r2, and then transformed
into sums of products using the POTFIT46 algorithm of
MCTDH.
A quadratic complex absorbing potential (CAP) was

placed at the position ±zcap along the z coordinate to
absorb the outgoing electron before it reaches the end of
the DVR grid. The CAP obeys

W± = −iη(z ∓ zcap)
2Θ(z ∓ zcap) (18)

where η is the CAP strength and Θ is the Heavyside
step function. The absorption prevents the unphysical
reflection of outgoing electrons at the grid boundaries.
The absorption of the WP is also used to analyze the

energy distribution of the outgoing WP. The quantity
that we want to compute is the reaction probability (RP)
for ICEC which corresponds to the scattering matrix ele-
ment |SL0,R0(ET )|2 which is the probability that an elec-
tron impinging from the left on the DQD possessing an
electron bound at R0 leads to emission of an electron to
the right leaving behind a DQD with an electron bound
to L0.
The computation of the matrix element was performed

by using the expression for the stationary scattering
eigenfunctions in terms of the initial wave packet WPi

47

in order to obtain the amount of emitted density from
the wave packet absorbed by the CAP.46 The energy dis-
tribution |∆WPi (ET )|2 of the incoming WPi is used to
normalize the Fourier transform of the absorbed density

gL0(τ) to obtain the reaction probability (RP).46 We ex-
plicitly computed

RP (ET )

100
= |SL0,R0(ET )|2 =

2Re
∫∞

0 gL0(τ)e
iET t/~dτ

π|∆WPi(ET )|2
(19)

where

gL0(τ) =

∫ ∞

0

〈

Ψ(t)
∣

∣

∣
P

(1)
L0
W

(2)
+ P

(1)
L0

∣

∣

∣
Ψ(t+ τ)

〉

dt

+

∫ ∞

0

〈

Ψ(t)
∣

∣

∣
P

(2)
L0
W

(1)
+ P

(2)
L0

∣

∣

∣
Ψ(t+ τ)

〉

dt

=2

∫ ∞

0

〈

Ψ(t)
∣

∣

∣
P

(1)
L0
W

(2)
+ P

(1)
L0

∣

∣

∣
Ψ(t+ τ)

〉

dt(20)

and

∆WPi(ET ) =

√

m∗

2πpR0

∫ ∞

−∞

fWPi(z)e
ipR0zdz (21)

where the function fWPi(z) is a Gaussian wave packet
with a spatial width ∆xWPi . ∆WPi(ET ) is the en-
ergy distribution of the incoming WPi peaked around
εWPi and given by the appropriate Fourier trans-
form which uses the incoming momentum pR0 =
√

2m∗(ET − ER0) ≡ pi.
47

gL0(τ) is the absorbed electronic density by the right
CAP while another electron is bound in the L0 state.

The projectors P
(q)
L0

acting on electron q specify which
electron is in the L0 state, and the sum over both possible
configurations gives the total absorbed density. Note that
this quantity explicitly correlates both events, emission
and capture, and thus gives only the ICEC contribution
of the total emitted density. The scattering matrix in
Eq. (19) corresponds to the R0 initial state because the
initial wave function

Ψ(0) = [fWPi(z1)φR0 (z2)− fWPi(z2)φR0(z1)]×
φ0(x1, y1)φ0(x2, y2) (22)

represents a bound electron at R0 plus an incoming elec-
tron both in the ground state of the confinement poten-
tial.
The RP is a wave-packet independent quantity in the

energy range of the size of the energy width of the in-
coming wavepacket WPi (see Eq. (19)). At each energy,
the RP gives the relative amount (in %) of the electron
density that would be emitted in the calculation with a
monoenergetic electron at that energy. The absorption
of WPi by the CAP outside the DQD economizes the
computation time needed to obtain the RP.

V. RESULTS

In this section we analyze the electronic structure (Sec.
V.A) and the dynamics of the electrons (Sec. V.B) in
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A

B

C

Figure 3. The three QD model potential setups studied in this
work. Setup A is briefly analyzed and used only to clarify that
no transmission to the right is possible without a left QD. In
setup B each QD has one bound one-electron state, L0 andR0,
respectively, and B is used to show how ICEC works in double
QDs. In setup C the left QD has an additional one-electron
excited state L1. In such a configuration the energy of the
two-electron resonance |L1R0〉 can be tuned to substantially
increase the ICEC reaction probability.

the DQD relevant for ICEC. We compare a number of
different configurations that can be classified according
to the general setups of the QD model potentials shown
in Fig. 3. In setup A only the right QD with a single
one-electron state R0 is present. The only purpose of
investigating this setup is to prove that, for the incoming
electron energies considered in this work, no transmission
to the right is possible when the left QD is not present.
The configurations belonging to setup B have one left
and one right QD and each dot has a single one-electron
state, L0 and R0, respectively. In these cases ICEC is
allowed33 and occurs as visualized in Fig. 2. Finally,
setup C comprises configurations where the left QD has
an excited one-electron state L1 in addition to the L0

ground state allowing for the intermediate state |L1R0〉
to be formed. Since electrons located in the left and
right QD are interacting with each other through the
long-range Coulomb interaction pushing the state into
the continuum, this state turns out to be a two-electron

resonance. We will show that under certain conditions
this resonance leads to a remarkable increase of the ICEC
probability.

A. Electronic Structure

As a first step in our analysis we want to study the
electronic structure of the DQD embedded in the wire.
As explained in Sec. III the two-electron states can be
named after the one-electron states of the DQD. The
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Figure 4. (Color online) The potential Vl(z) (black dashed
lines) and its bound states for two different configurations.
(a) The DQD potential binds only two one-electron states
with wave functions ψR0 (green squares) and ψL0 (blue cir-
cles). The energy levels of these states are marked by dashed
lines and the respective binding energies are indicated. (b)
The left well is shallower and wider than in (a) and binds
one additional excited one-electron state with a p-type wave
function ψL1 (red crosses).

confinement part of the wave function is described by
the lowest energy harmonic oscillator wave functions in
x and y both with frequency ω and effective mass m∗

and we therefore concentrate only on the z wave function
analysis in what follows.

The potential energy curves and the wave functions
of the states for two of the configurations used in the
dynamical calculations are shown in Fig. 4. The concrete
configuration of setup B in Fig. 4(a) has two bound one-
electron states L0 and R0. It is clearly visible that both
states are localized in the respective QDs and that there
is no hybridization of the states. Two characteristics of
this configuration make this possible. One is the distance
R between the QDs, which is large compared to their size,
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and the other is the asymmetry of the DQD which leads
to different energies for the left and right QDs.
The configuration shown in Fig. 4(b) is a representa-

tive of setup C. It shows a wider and shallower left QD
which allows for an excited one-electron state L1. We see
that the binding energy EL1 is much smaller than EL0

and ER0 and the wave function ψL1 is therefore more
extended than ψL0 and ψR0 .
We set the origin of the energy scale to 2ω through-

out the study. It amounts to the energy contributed by
both electrons in the ground state of the transversal con-
finement potential Vc (Eq. (7)). With this choice the
bound (unbound) states of the longitudinal potential of
the DQD have negative (positive) energies.

B. Dynamical calculations and results

By employing electron dynamics calculations we can
investigate what happens when an electron coming from
the left side approaches the DQD where one electron is
initially bound and how, if at all, ICEC occurs. We start
with the simplest case of setup A (Sec. VB 1) where only
the right QD is present and then move on to different
configurations of setup B (Sec. VB 2) and C (Sec. VB3).
All examples were computed using both the 1D model
(Sec. III B) and the full 3D Hamiltonian (Sec. III A) for
triplet symmetry. In all cases we chose the energy of the
incoming wave packet (WPi) such that it is to low to
ionize the electron initially bound to the R0 state, even
if the full energy width of the WPi is considered.

1. One single QD

The initial state of the two-electron systems is an in-
coming free electron from the left and a bound one in the
right QD. A similar setup was studied before,48 however,
for a different energy regime of the incoming electron in
which two-electron ionization was allowed. The param-
eters VR = 0.6 a.u. and bR = 1.0 a.u. used here give a
single bound state with an energy of ER0 = −0.2463 a.u.
The incoming wave packet (WPi) is an energy normalized
Gaussian peaked around εWPi = 0.056 a.u. The packet
has a spatial width ∆xWPi = 10.0 a.u. and an energy
width ∆εWPi ≈ 0.033 a.u.49 which is not enough to ion-
ize the bound electron by the incoming one. Moreover,
excitation to higher states in the transversal directions
are energetically forbidden for these parameters.
The dynamics of the full 3D scattering process calcu-

lated according to the method described in Sec. IV is
visualized in Fig. 5(a) by the longitudinal electronic den-
sity

ρ(z, t) =

∫

dr′
∫

dx

∫

dy |Ψ(r, r′, t)|2 (23)

as a function of z and t. The incoming wave packet (WPi)
approaches from the left to the QD located at z = 5 a.u.

(right dot) which is initially occupied by one electron (R0

state). The wave packet is initially located at z = −125
a.u. The incoming electron is completely reflected start-
ing at about t=3 a.u. while the other electron remains
bound in the right QD. Note that the energy covered by
theWPi is too low to remove the electron in the right QD
( εi +∆εWPi < |ER0 |). Since the left QD is missing, no
emission to the right is observed. The same calculation
was made using the one-dimensional model described in
Sec. III B and is shown in Fig. 5(b) for comparison. The
evolution is in both cases very similar, only the popula-
tion P of the lowest populated SPF (which is a measure of
the convergence as explained in Sec. IV) is different (but
however small) in each case giving a value of P = 1×10−8

for the simplified model and P = 1 × 10−7 for the full
calculation. For long times (t ≈ 25 a.u.) the total den-
sity ρ(z, t) in the system decreases to zero. The reason
for this unphysical behavior is the CAP absorbing the
continuum electron. This effect has no impact on the ob-
served results, because the reflection process is already
completed within a much shorter time of about 10 a.u.

2. ICEC in a double quantum dot

We now focus on configurations of setup B where we
added the left QD at a distance R = 10.0 a.u. ICEC
takes place in these DQDs as depicted in the scheme
in Fig. 2 and we confirm this by using different con-
figurations for which Eq. (3) is shown to be fulfilled.
The spatially resolved time evolution of ρ(z, t) of four
configurations is shown in each left panel of Fig. 6 (a)-
(d). The right QD and the incoming wave packet WPi

are the same in all four configurations with VR = 0.6
a.u., bR = 1.0 a.u. (same as for setup A before) and
εi = 0.130 a.u., ∆xWPi = 10 a.u., ∆εWPi = 0.051 a.u.
The left QD is characterized by bL = 1.0 a.u., but its
depth varies in these configurations taking on the values
VL = 0.800, 0.775, 0.750, 0.725 a.u. The corresponding
energies EL0 and ∆E = ER0 −EL0 are given in Tab. III.
Electron emission to the right is clearly visible in all

four cases. The flatter slope of the final wave packet
(WPf ) trajectory traveling to the right indicates that
the emitted electron has higher momentum than the in-
coming electron. According to Eq. (3) the final energy of
the outgoing electron represented by pf calculated from
Eq. (4) (see Tab. III) decreases when the depth VL de-
creases. The RP gives a quantitative measure of ICEC
and can be computed using Eq. (19). Descriptively, it is
the probability of capturing an electron in the left QD
while simultaneously emitting an electron to the right
from the right QD. The RP as a function of the incom-
ing electron energy εi is shown in each right panel of
Fig. 6 (a)-(d). The energy range covered in the RP plots
is determined by the peak εWPi with the energy width
∆εWPi of the incoming wave packet. It is possible to
obtain reliable results from one simulation within the en-
ergy range εWPi ± 2∆εWPi , which is used for the RP
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Table II. Parameters used in the MCTDH calculations. The discrete variable representation (DVR) types correspond to
harmonic oscillator (HO) and sine DVR (SIN).

x y z

DVR type HO HO SIN

DVR points/Primitive Basis 5 5 431

Range / a.u. (−2.02, 2.02) (−2.02, 2.02) (−270.00, 270.00)

Grid Spacing (dx) / a.u. 1.01 1.01 1.25

SPFs 14 (x, y, z combined)

zcap - - 168.75

(a)

(a)

(b)

3D

1D

Figure 5. (Color online) Evolution of the electronic density
Eq.(17) for a QD of setup A using the full three-dimensional
Hamiltonian (a) and (b) the one-dimensional model of sec-
tion IIIB. The parameters used for the MCTDH simulations
are given in Tab. II. Since the incoming energy is very low and
the left QD is missing, no emission to the right is observed.

plots.
At this point we would like to discuss more the mean-

ing of the RP. The values given in the plots for ICEC
are exactly the amount of the total electron density in
percent that would be ejected from R0 to the right and
correspondingly the increase of the population of L0, if

Table III. The parameters used in the four configurations for
setup B discussed in the text and in Fig. 6, and the resulting

computed energies, final momenta pf , and positions ε
(peak)
i of

the peak values of the reaction probability (RP). All values
are given in a.u.

VL EL0 ∆E pf ε
(peak)
i

0.800 −0.3769 0.1306 0.722 0.1157

0.775 −0.3599 0.1136 0.698 0.1327

0.750 −0.3430 0.0967 0.673 0.1496

0.725 −0.3264 0.0801 0.648 0.1662

the electron incoming from the left was mono-energetic
with energy εi. On the other hand, a mono-energetic
electron implies an infinitely wide WPi (∆xWPi → ∞ ),
which cannot be realized numerically on our finite DVR
grid. In our calculations we take a rather broad incoming
wavepacket and by employing Eq. (19) we can compute
the RP.

Let us analyze the results for RP shown in Fig. 6.
They clearly show that ICEC is no at all constant or
even monotonic in the covered energy range. On the
contrary, it is seen that ICEC is very selective in energy.
This is a non-trivial result considering that the ICEC
channel into L0 is open for all incoming electron energies
(Eq. (4)). The peak of the RP has its origin in the fact
that the total energy ET (see Eqs. (1) and (2)) is the rel-
evant energy in a scattering process.50 The RP shows a
marked increase in the probability when the total energy
ET matches the energy gained by the DQD (−∆E) in
the ICEC process in which the emitted electron takes an
energy ∆E. Using Eq. (1) we obtain the value of εi at
which the peak of the RP is located,

ε
(peak)
i = −ER0 −∆E. (24)

The values obtained for ε
(peak)
i are given in Tab. III

and depicted with vertical dashed lines in the RP plots
of Fig. 6. We see that the RP peaks obtained from the
dynamics fit exactly the predicted values using Eq. (24).
The RP values for the configurations of setup B all re-
vealed probabilities below 1%.
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(a) (c)

(b) (d)

Figure 6. (Color online) Evolution of the electronic density (left panels) and the obtained ICEC reaction probabilities (RP)
(right panels) for setup B of Fig. 3. The incoming wave packet (WPi) approaches the DQD centered at z = 0 a.u. from the left
which is initially occupied by an electron in the right QD (R0 state). εi = 0.130 a.u. and the parameters of the right potential
are the same in all four cases. The depth of the left dot VL is varied as indicated for each case: (a) VL = 0.800, (b) VL = 0.775,
(c) VL = 0.750, (d) VL = 0.725 a.u. The reaction probabilities shown in the right panels exhibit a peaked energy distribution

centered at the values ε
(peak)
i (depicted as dashed vertical lines computed by Eq. (24) and listed in Tab. III).

3. Capture in the presence of a two-electron resonance

The physics of the capture is complicated in the pres-
ence of an increased number of bound states of the QDs.
In general, several capture and decay channels will be
open before and after the capture and the physics of res-
onance states comes into play. We analyze the probably
most simple extension to the DQDs described in the pre-
vious sections (setups A and B) by including one extra
excited state in the left QD (setup C).

Accordingly, we modify the potential well of the left
QD by choosing bL = 0.3 a.u. instead of bL = 1.0 a.u.,
i.e. we make the left well wider. Then we analyze the
energies of the states as a function of the depth VL. This
dependence is shown in Fig. 7 for the three-dimensional
model. Due to the Coulomb interaction the DQD accom-
modates a two-electron resonance which derives from the
one-electron states L1 and R0. The |L1R0〉 resonance en-
ergy and decay rate (inverse lifetime) are shown as black
dots in Fig. 7. Decay rates in QDs can be computed us-
ing different methods.25,27,51 We follow here the approach
employed in25 in which the resonance state |L1R0〉 is pre-
pared by imaginary time propagation followed by the real
time evolution to find its total decay rate.

The capture process occurs in the presence of the res-
onance as indicated in Fig. 8 so that different electron
capture scenarios can be imagined.

As before in setup B, electron capture into the L0 state
with simultaneous release of the other electron from the
R0 state is one possible pathway (direct ICEC). More-
over, if the energy of the resonance is above the thresh-
old, the incoming electron can be captured into the two-
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Figure 7. (Color online) Width (top panel) and energies
(bottom panel) of the |L1R0〉 two-electron resonance (brown
crosses one-dimensional model, black dots three-dimensional
system) playing a relevant role in enhancing the ICEC prob-
ability in setup C as function of the depth VL of the left QD.
Shown are also the energies of all the single-electron states
L0, R0, and L1 as dashed green, red, and black lines, respec-
tively. The value of the energy difference −∆E = EL0 −ER0

is indicated by a dash-dotted orange line.

electron resonance state |L1R0〉. After this it decays
through a process called interatomic Coulombic decay
(ICD),25,27,29–32 that means by deexcitation of the elec-
tron in the left QD (|L1〉 → |L0〉). The released en-
ergy is used to emit the electron from the right QD
(|R0〉 → e−).25 We denote this pathway as the resonance
channel and the process as resonance-enhanced ICEC.
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Figure 8. (Color online) Schematic view of interatomic
Coulombic electron capture in a model potential for a dou-
ble QD in the presence of a two-electron resonance |L1R0〉
(dashed red lines). The incoming electron can be captured
into |L1R0〉 (middle panel) because the resonance energy lies
above the threshold. Then, the resonance decays by ICD
(middle to bottom panel), a process in which the excited elec-
tron of the left QD decays from |L1〉 to the |L0〉 state while
transferring the excess energy to the electron in the right QD
which is emitted to the continuum.

After being populated by the incoming electron, the res-
onance can also decay by emitting elastically the electron
to the left. This decay resembles that of a shape reso-
nance:50 e−+ |R0〉 → |L1R0〉 → |R0〉+ e−. This decay is
of course only possible when the resonance energy EL1R0

is higher than ER0 , a situation that was not usually ful-
filled in the systems where ICD was investigated earlier.
For completeness we mention that the incoming electron
energy is sufficiently low so that direct electron capture
into the L1 state is energetically forbidden for all cases
considered here.

The time evolution of the electron density ρ(z, t) has
been calculated for different left well depths VL =0.65,
0.67, 0.71, and 0.74 a.u. (Fig. 9, left panels). Comparing
with the results for setup B (Fig. 6) a clear difference is
observed for the density emitted from z = 0 to the right.
In setups C a continuous decay with an exponential time
constant is visible while an almost instantaneous electron
emission takes place for setups B. This indicates that the

mechanisms involved in the capture and emission pro-
cesses are different for both setups. It is also noteworthy
that the emitted electronic density to the left becomes
more complex in case C showing clear signatures of in-
terference with the incoming WPi. The electron emitted
elastically to the left is responsible for these interference
effects.

The results obtained for ICEC in section VB2 show
that the ICEC probability is highest if the total energy
ET matches the negative of the energy difference ∆E.
It is, therefore, worthwhile to study the behavior of the
ICEC probability in relation to the value of ∆E in the
presence of a resonance. Fig. 7 shows that the resonance
energy crosses −∆E around the value VL = 0.70 a.u. We
previously addressed the configuration with VL = 0.71
a.u. which is near the crossing point of the energies
EL1R0 = −∆E.33 In this case, the coincidence of the RP
peak and the resonance energy lead to an extraordinary
increase of the ICEC probability. The presence of the
resonance enables an extra channel that can be tuned to
cooperatively augment the emission. The RP for this and
three other VL values belonging to configurations above
and below the mentioned crossing point are shown in the
right panels of Fig. 9. The incoming WPi also depicted
in Fig. 9 is different for each of the configurations because
the RP region of interest changes with the resonance en-
ergy. Nevertheless, the energy range shown is the same
in the four plots.

We observe that for VL = 0.65 and 0.67 a.u. the RP
develops one large peak with a shoulder indicating a sec-
ond peak. These two peaks correspond to the direct and
the resonance-enhanced ICEC channels of the scattering
process. The vertical lines depicted in the corresponding
panels of Fig. 9 stand for the energy of the resonance and
of the ICEC peak computed from Eq. (24). The maxima
of the RP are seen to be slightly displaced from these
lines. In this sense the simple picture of independent res-
onance and direct ICEC peaks is not strictly valid and
a correction taking the interaction between them into
account is needed in order to obtain the correct peak po-
sitions. It should also be clear that both channels may
interfere. It is noteworthy that the RPs now take on val-
ues of 10 and 16 %, respectively, which are substantially
higher than in the case of setup B where only the direct
ICEC channel is operative.

The choice of VL = 0.71 a.u. in panel (c) provides an
extraordinary increase of the capture and emission prob-
ability. This probability of 22 % indicates that the direct
and resonance ICEC pathways coherently contribute to
the same channel |R0〉 + e−. The peak height strongly
depends on whether the values of Eres and −∆E (de-
picted in Fig. 9 and listed in Tab. IV) coincide. We see
in Fig. 9 for case (d) where VL is slightly enhanced that
the peak height, now about 5 %, is again smaller than in
case (c). Clearly, the increase of the ICEC probability in
case (c) derives from the concurrence of both processes.
The total width of the RP peak for case (c) is very nar-
row and given by the inverse lifetime of the resonance,
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Table IV. Depth VL of the left QD, resonance and ICEC peak
values in a.u. for the setup C cases.

VL Eres −∆E ε
(peak)
i Γ(×10−4) Γ(RP)

(×10−4)

0.65 −0.179± 0.003 −0.148 0.0980 130± 9 130± 10

0.67 −0.183± 0.008 −0.164 0.0826 92± 6 95± 8

0.71 −0.196± 0.002 −0.194 0.0518 39± 2 38± 2

0.74 −0.202± 0.002 −0.218 0.0285 26± 2 23± 4

as opposed to the other cases where a wider RP with
more than one peak is obtained. This narrowness can be
utilized to design an energy selective device.33

In case (c) the emitted electron density reaches the grid
boundary before the resonant emission from the DQD has
terminated. This has no effect on the RP values as we
find when using longer grids where the full emission is
possible before reaching the absorbing boundary. This is
demonstrated explicitly in the following section.

4. ICEC in the one-dimensional effective model

In addition to the results given by the full three-
dimensional simulations we performed computations us-
ing the one-dimensional model described in section III B.
These calculations are much less time consuming and also
allow to use much larger grids.
The result for configuration (a) of Setup B is shown

in Fig. 10 demonstrating that the RP is structurally
and quantitatively similar to that of the full three-
dimensional computation. Without showing the picture
we note that also the evolution of the electron density
in the one-dimensional effective model is very similar to
that of Fig. 6 for the full three-dimensional computation.
Since the computation times are considerably reduced

for the one-dimensional model, we can perform the sim-
ulations on much longer grids than those used for the 3D
calculations. Now, we can address numerically the ques-
tion whether the RP obtained from Eq. (19) reproduces
the population of the L0 state via ICEC computed by
employing incoming mono-energetic electrons. The ini-
tial wave packet WPi can now be chosen to be spatially
wider with ∆x = 20 a.u., with a reduced dispersion in
energy ∆εWPi ≈ 0.0130 a.u. As indicated in Sec. VB 3,
the maximum population of the L0 state over time can
now be computed for a selected value of the energy εi of
the incoming electron. This determines the RP at that
energy. Clearly, we need to repeat the simulation using
different incoming energies in order to construct a full
RP curve. An example of an RP curve constructed in
this manner is depicted in Fig. 11. We observe that the
maxima of the L0 populations follow closely the values of
the RPs obtained from the flux determined via Eq. (19),
even though the energy distributions ∆εWPi of the WPis
used to describe mono-chromatic incoming electrons are
not extremely narrow as they should be. If they were

infinitely narrow, then we would expect both RP results
to coincide.

The RP does not change if we use different WPs. We
can demonstrate this by using an energetically narrow
wave packet with ∆εWPi ≈ 0.0130 a.u. to compute the
RPs and comparing the result with the RPs computed us-
ing a wide WP with ∆εWPi ≈ 0.0255 a.u. The lower pan-
els in Fig. 11 show that the respective RP curves com-
pare very well in the energy regions where both curves
are valid.

The comparison of the full 3D and the one-dimensional
model for setup C is shown in Fig. 12. We chose the pa-
rameters of configuration (c) of Fig. 9, where the great-
est RP due to resonance-enhanced ICEC occurs. As for
setup B, the evolution of the electronic density is very
similar to that of Fig. 9(c) and the RP is almost identi-
cal.

The one-dimensional RPs were computed for three dif-
ferent grid lengths, and no difference with the results of
the computed full 3D RPs (270 a.u.) is observed for grids
up to 960 a.u. This shows that the RP is a robust and re-
liable quantity which is independent of the WP used and,
to a great extent, also of the grid size. This important
point is further discussed below.

In principle, one could estimate the RP for a given
energy by studying the populations PL0 or PR0 of the
one-electron states L0 and R0 of the left and right QDs
computed using an energetically narrow WP and a long
grid. For setup B this estimate works well as we did use
a narrow WP. For setup C, however, we used in the full
3D calculations an energetically wide WP and a rather
short grid and one cannot expect the above mentioned
estimate to produce realistic results. Indeed, our cal-
culations of these populations and of the norm N(t) of
the wave packet show that these quantities decay due to
absorption into the boundaries of the grid before the es-
timate takes on the correct value. This is mainly because
the WP used is very wide. This raises the question on
why is then the RP computed employing Eq. (19) not
affected by the grid size as is demonstrated in Fig. 12.
The answer is that this equation keeps collecting the flux
on the boundary as long as the population PR0 on the
right QD decreases and that of the left QD, PL0 , increases
(see Eqs. (19-20). Clearly, absorption on the boundaries
does not affect the RP of ICEC when computed via these
equations. In other words, the RP is very robust against
absorption and this also explains the insensitivity of the
results to the size of the grid and width of the wave packet
as found above.

The results show that the overall density evolution is
very similar and the 1D model provides very good results
for the RP in both setups B and C. Moreover, sometimes
it is only possible to perform one-dimensional computa-
tions using grids long enough to show the complete ICEC
process. This assertion strongly supports the use of one-
dimensional effective models when εi is low and thus is
not able to produce excitations in the lateral confine-
ment. The one-dimensional model is a very useful tool if
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(a) (c)

(b) (d)

Figure 9. (Color online) Evolution of the electronic density and obtained reaction probability (RP, black solid line) for setup
C of Fig. 3. The incoming wave packet (WPi, red dash-dotted line) approaches from the left to the DQD centered at z = 0
a.u. which is initially occupied by an electron in the right QD (R0 state). The left dot binds two states L0 and L1 and the
depth of the left dot VL is varied as: (a) VL = 0.650, (b) VL = 0.670, (c) VL = 0.710, (d) VL = 0.740. The emission of
the electron initially located in R0 takes place through the process shown in Fig. 8. In the right panels the energy of the
two electron resonance (L1R0) and that of the direct ICEC peak are indicated with vertical lines (green continuous and black
dashed, respectively) and tabulated in Tab. IV. In case (c) the matching of both energies (resonance and direct) gives a huge
enhancement of the emission with a narrow energy distribution, which corresponds to the width of the resonance (see table IV).
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Figure 10. (Color online) Comparison of the ICEC reac-
tion probability (RP) for configuration (a) of setup B (see
Fig. 6) obtained using the one-dimensional effective model
of Sec. III B and the result of the full 3D computation. The
RP of the full calculation (black) compares very well to the
one-dimensional result (orange dashed). The vertical black

dashed line indicates the value of ε
(peak)
i given by Eq. (24).

the RPs of many different configurations needs to be an-
alyzed, because it allows to quickly identify the relevant
energy range and shape of the RPs.

VI. DISCUSSION

We demonstrated that ICEC is operative and in some
cases a very effective electron capture mechanism in
DQDs. In the previous sections we have shown how
a simple full-dimensional model can be constructed to
describe the process. Nevertheless, our model includes
only electron correlation to mediate electron capture, al-
though other capture mechanisms are likely to be as effec-
tive as ICEC. Therefore we stick to an estimation on the
importance of ICEC with respect to other processes. As
we will show, the capture times for ICEC are in the same
order or even faster than other common mechanisms.

The capture rate into QDs is the commonly used quan-
tity to characterize the efficiency of an electron capture
process and it depends strongly on the amount of time
it takes for the capture to be completed, i. e. a faster
capture leads to a greater efficiency. The importance of
ICEC is then determined by comparing the time it takes
ICEC to complete capture compared to the electron cap-
ture times reported for other processes available in the
system.19,21,52,53

To estimate the speed of ICEC we transfer the param-
eters of our model to realistic semiconductor structures
using the effective mass conversion of Table I. It is appli-
cable to gate defined DQDs with quasi-one dimensional
geometry2,54 or to QDs embedded in nanowires,7 so we
compare ICEC times with those obtained for other cap-
ture processes in these systems. Table V shows the en-
ergies and sizes for different materials in setup B, case
(a) and Table VI those for setup C, case (c). The en-
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Figure 11. (Color online) Upper panels: Comparison of two
methods to determine the reaction probability RP for case
(a) of setup B. The one-dimensional model was employed.
The left panel shows the RP obtained by the flux anal-
ysis using Eq. (19) with a single energetically wide WPi,
εWPi = 0.130,∆εWPi = 0.0255 a.u. and ∆xWPi = 10.0 a.u.
(black line) and that obtained from several simulations at
individual energies at the maxima of L0 population of ener-
getically narrower WPi’s, ∆xWPi = 20.0, ∆εWPi ≈ 0.0130
a.u. (brown line). Regarding the latter, the population of L0

as a function of time for three different WPi’s εWPi = 0.090,
0.120, 0.150 a.u. (green middle, red top and blue bottom line,
respectively) is shown in the right panel. The corresponding
WPi’s are shown in the left panel (dashed lines, green on the
left, red in the middle and blue in the right). To obtain the
brown curve in the left panel each maximum of the L0 pop-
ulation was assigned to the respective εWPi in the left panel
and values were interpolated. Lower panels: Comparison of
the reaction probabilities (RPs) obtained from different WPs.
The RP from the wide WPi shown in the upper panels (black
solid line) is compared with the RP obtained from the en-
ergetically narrower WPis, εWPi = 0.090, 0.120, 0.150 a.u.,
∆εWPi ≈ 0.0130 a.u., ∆xWPi = 20.0 a.u. (green, red, and
blue solid line with full circles). The corresponding WPis are
shown with dashed lines.

ergies obtained are well in the range of intraband level
spacings of QDs in nanowires7,9 and of intrashell levels
in self-assembled QDs.22

Let us first analyze setup B. The time window shown
in Fig. 6 is about T = 1400 a.u. and by transforming
to SC materials of Table V we obtain TGaAs = 77.8,
T InP = 71.3, TAlN = 6.1, T InAs = 267.3 ps. The time
it takes the ICEC process to capture and emit the elec-
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Figure 12. (Color online) Comparison of the ICEC reac-
tion probability (RP) for configuration (c) of setup C (see
Fig. 9) obtained using the one-dimensional effective model
of Sec. III B and the result of the full 3D computation. The
RP of the full calculation (black crosses) compares very well to
the one-dimensional results (circles) even for very large grids.

The vertical black dashed line indicates the value of ε
(peak)
i

given by Eq. (24) and the vertical full green line the |L0L1〉
resonance energy.

tron can be estimated from the reaction probability if
we take into account the time-energy uncertainity and
the fact that the process gives a peak-shaped RP. The
RP line shape can then be fitted to a Breit-Wigner res-
onance line shape. We performed such a fitting and find
for case (a) tRP

ICEC = 28 au, and the times in different
materials are accordingly: tGaAs

ICEC = 1.6, tInPICEC = 13.1,
tAlN
ICEC = 0.12 and tInAs

ICEC = 5.45 ps. We stress that this
time estimation only makes sense because we obtained a
resonant behavior, rather than a non zero contribution
for all energy values.
The surprisingly short time scale it takes ICEC to

occur makes ICEC a promising mechanism competitive
with other capture processes. It is faster than the re-
ported capture times of 100 ps for free carriers in bulk
GaAs into InAs/GaAs QDs in single layer samples mea-
sured at room temperature55.
The time scale of ICEC obtained for the different ge-

ometries always gives shorter times for smaller sizes of the
DQD. This fact stresses the importance of confinement
for the process to be competitive. It can be connected
to previous studies on ICD in molecular dimers, where
the length scale of about 0.3 nm typically corresponds to
lifetimes in the range of several fs.29

For the setup C case (c) the time window shown in
Fig. 9 is of T = 2700 a.u. and transforming it to the semi-
conductor materials of Table V we obtain TGaAs = 150.0
, T InP = 137.5 , TAlN = 11.8 , T InAs = 515.6 ps. We
can in this setup estimate the duration of the emission
using the lifetime of the involved resonance |L1R0〉. We
have that for case (c) τ = 256.8 a.u. which gives the
following times in real semiconductors τGaAs = 14.26,
τInP = 13.08, τAlN = 1.12, τInAs = 49.04 ps. From the
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Table V. Realistic values of the parameters in different semi-
conductors for geometry (a) in setup B. The energies are given
in meV and the lengths in nm. Effective masses and dielectric
constants taken from [56 and 57]

.

Parameter GaAs InP AlN InAs

R 97.94 89.89 11.24 286.15
1√

bR/L
9.79 8.99 1.12 28.61

l 3.86 3.70 1.58 6.08

VL 9.48 4.87 120.52 2.76

VR 7.11 7.75 90.39 2.07

EL0 -4.47 -4.87 -56.78 -1.30

ER0 -2.92 -3.18 -37.10 -0.85

Table VI. Realistic values of the parameters in different semi-
conductors for geometry (c) in setup C. The energies are given
in meV and the lengths in nm. Effective masses and dielectric
constants taken from [56 and 57].

Parameter GaAs InP AlN InAs

R 97.94 89.89 11.24 286.15
1√
bL

17.88 16.41 2.05 52.24

1√
bR

9.79 8.99 1.12 28.61

l 3.86 3.70 1.58 6.08

VL 8.42 9.17 106.96 2.45

VR 7.11 7.75 90.39 2.07

EL0 -5.23 -5.69 -66.40 -1.52

ER0 -2.92 -3.18 -37.10 -0.85

EL1 − ER0 0.57 0.62 7.19 0.16

observed values of the GaAs energy spacings and elec-
tron energies in the range of < 5 meV, the decay of the
L1R0 resonance in ICEC seems to be competitive with
relaxation via phonons. The times for ICEC are, how-
ever, faster than reported intraband decay times due to
acoustic phonon emission for InGaAs/GaAs QDs of 100
ps.22

Our work is focused on strongly laterally confined
structures, such as nanowires, and is thus suitable for
the use of a one-dimensional effective potential. In all
cases and setups treated here both the full and one-
dimensional descriptions provided almost identical quali-
tative and quantitative results. The main result obtained
from this comparison for the cases studied in this work is
that the physics in the strongly laterally confined model
can be correctly described using the effective potential
when the characteristic lateral energies are about twice
or more than those of the QDs.

VII. CONCLUSIONS

Ultrafast electron capture in single QDs is an exten-
sively studied topic nowadays16,19,21 due to its relevance
in the development of a wide variety of technological ap-
plications.19,21,23 As shown here, electron capture via the
ICEC processes, in which the neighboring QD in a DQD
is getting ionized, is particularly fast and can play a sig-
nificant role in the dynamics contributing to the energy
transfer between QDs. The ICEC mechanisms in DQDs
could, in principle, be exploited to be implemented in de-
vices which generate a nearly monochromatic low energy
electron in a given direction.

The implementation of DQDs in nanowires using mate-
rials with long carrier lifetimes such as InP9,21 should be
favorable for ICEC. The rate at which the electron cap-
ture occurs varies with material and radius of the wire.
Reported times for carrier trapping cover a large range
from fast values of 10 ps for GaAs58 and 160 ps for ZnO21

to very slow ones such as 1 ns for InP nanowires.59 Using
wires with long carrier trapping times are favorable for
ICEC to be active.

The process is driven by long-range Coulomb inter-
actions, so we expect ICEC to be also applicable to
other QDs geometries like, e.g., self-assembled vertically
stacked dots.4,5,19,22

We have derived an effective one-dimensional approach
that correctly describes the dynamics and RPs of all
the cases we have considered. This approach reduces
considerably the computational efforts and also demon-
strates, by comparison with full 3D computations, that
the physics involved is described correctly by a one-
dimensional model as long as the characteristic confine-
ment energy is about twice or more than that of the QD.

The calculations presented were performed for the
same distance R between the dots. Since long-range cor-
relation is involved in ICEC a rather pertinent question
is how the reaction probability changes with R. The an-
swer has been partially given in the first publications on
ICEC in atoms and molecules (see Ref. 38) and for the
related ICD decay (see Refs. 25 and 26). The ICEC cross
section has an asymptotic 1/R6 decay with the distance,
according to previous theoretical estimates for atoms and
molecules. However, there are important contributions
not considered in the asymptotic formulas leading to
1/R6 which are due to orbital overlap (see, Ref. 25 for
ICD in QDs and Ref. 60 for molecules). These contribu-
tions can lead in some cases to a much faster ICD pro-
cess. Furthermore, the quasi-one dimensional geometry
of the dots considered here has a clear influence on ICD
(Ref. 25) and probably also on ICEC. The calculations
are rather cumbersome and at the moment there is no
exhaustive analysis of this kind for ICEC, but it will be
done in the future.
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46 M. H. Beck, A. Jäckle, G. A. Worth, and H. D. Meyer,

Phys. Rep. 324, 1 (2000).
47 D. J. Tannor and D. E. Weeks, J. Chem. Phys. 98, 3884

(1993).
48 S. Selstø and S. Kvaal, J. Phys. B: At. Mol. Opt. Phys. 43,

065004 (2010).
49 The width of the Gaussian wave packet in momentum

space is given by ∆p = 1
2∆x

. Then the energy width is

given by ∆εWPi = pi∆p =
√

2εi
2∆x

.
50 J. R. Taylor, Scattering Theory: The Quantum Theory

of Nonrelativistic Collisions (Dover Publications, Mineola,
New York, 2006).

51 F. M. Pont, O. Osenda, J. H. Toloza, and P. Serra, Phys.
Rev. A 81, 042518 (2010).

52 S. Sauvage, P. Boucaud, R. P. S. M. Lobo, F. Bras, G. Fish-
man, R. Prazeres, F. Glotin, J. M. Ortega, and J.-M.

Gérard, Phys. Rev. Lett. 88, 177402 (2002).
53 I. Robel, B. A. Bunker, P. V. Kamat, and M. Kuno, Nano

Lett. 6, 1344 (2006).
54 C. Fasth, A. Fuhrer, M. T. Björk, and L. Samuelson, Nano

Lett. 5, 1487 (2005).
55 D. Turchinovich, K. Pierz, and P. Uhd Jepsen, Phys. Sta-

tus Solidi C 0, 1556 (2003).
56 J. Singh, Physics of semiconductors and their heterostruc-

tures (McGraw-Hill, New York, 1993).
57 M. E. Levinshtein, S. L. Rumyantsev, and M. S. Shur,

Properties of Advanced Semiconductor Materials: GaN,
AIN, InN, BN, SiC, SiGe (John Wiley & Sons, New York,
2001).

58 P. Parkinson, J. Lloyd-Hughes, Q. Gao, H. H. Tan, C. Ja-
gadish, M. B. Johnston, and L. M. Herz, Nano Lett. 7,
2162 (2007).

59 L. V. Titova, T. B. Hoang, J. M. Yarrison-Rice, H. E. Jack-
son, Y. Kim, H. J. Joyce, Q. Gao, H. H. Tan, C. Jagadish,
X. Zhang, J. Zou, and L. M. Smith, Nano Lett. 7, 3383
(2007).

60 V. Averbukh, I. B. Müller, and L. S. Cederbaum, Phys.
Rev. Lett. 93, 263002 (2004).


