34 research outputs found

    Kompaneets Model Fitting of the Orion-Eridanus Superbubble

    Full text link
    Winds and supernovae from OB associations create large cavities in the interstellar medium referred to as superbubbles. The Orion molecular clouds are the nearest high mass star-forming region and have created a highly elongated, 20 degree x 45 degree, superbubble. We fit Kompaneets models to the Orion-Eridanus superbubble and find that a model where the Eridanus side of the superbubble is oriented away from the Sun provides a marginal fit. Because this model requires an unusually small scaleheight of 40 pc and has the superbubble inclined 35 degrees from the normal to the Galactic plane, we propose that this model should be treated as a general framework for modelling the Orion-Eridanus superbubble, with a secondary physical mechanism not included in the Kompaneets model required to fully account for the orientation and elongation of the superbubble.Comment: 15 pages, 5 figures, 2 tables, accepted by MNRAS, minor grammatical change

    Mid-J CO observations of Perseus B1-East 5: evidence for turbulent dissipation via low-velocity shocks

    Full text link
    Giant molecular clouds contain supersonic turbulence and magnetohydrodynamic simulations predict that this turbulence should decay rapidly. Such turbulent dissipation has the potential to create a warm (T ~100 K) gas component within a molecular cloud. We present observations of the CO J = 5-4 and 6-5 transitions, taken with the Herschel Space Observatory, towards the Perseus B1-East 5 region. We combine these new observations with archival measurements of lower rotational transitions and fit photodissociation region models to the data. We show that Perseus B1-E5 has an anomalously large CO J = 6-5 integrated intensity, consistent with a warm gas component existing within the region. This excess emission is consistent with predictions for shock heating due to the dissipation of turbulence in low velocity shocks with the shocks having a volume filling factor of 0.15 per cent. We find that B1-E has a turbulent energy dissipation rate of 3.5 x 1032^{32} erg / s and a dissipation time-scale that is only a factor of 3 larger than the flow crossing time-scale.Comment: 18 pages, 15 figures, 4 tables, accepted by MNRAS, fixed errors described in erratu

    Correlating Infall with Deuterium Fractionation in Dense Cores

    Full text link
    We present a survey of HCO+ (3-2) observations pointed towards dense cores with previous measurements of N(N2D+)/N(N2H+). Of the 26 cores in this survey, five show the spectroscopic signature of outward motion, nine exhibit neither inward nor outward motion, eleven appear to be infalling, and one is not detected. We compare the degree of deuterium fractionation with infall velocities calculated from the HCO+ spectra and find that those cores with [D]/[H] > 0.1 are more likely to have the signature of inward motions than cores with smaller [D]/[H] ratios. Infall motions are also much more common in cores with masses exceeding their thermal Jeans masses. The fastest infall velocity measured belongs to one of the two protostellar cores in our survey, L1521F, and the observed motions are typically on the order of the sound speed.Comment: Accepted to Ap

    Reorienting MHD colliding flows: a shock physics mechanism for generating filaments normal to magnetic fields

    Get PDF
    We present numerical simulations of reorienting oblique shocks that form in the collision layer between magnetized colliding flows. Reorientation aligns post-shock filaments normal to the background magnetic field. We find that reorientation begins with pressure gradients between the collision region and the ambient medium. This drives a lateral expansion of post-shock gas, which reorients the growing filament from the outside-in (i.e. from the flow/ambient boundary, towards the colliding flows axis). The final structures of our simulations resemble polarization observations of filaments in Taurus and Serpens South, as well as the integral-shaped filament in Orion A. Given the ubiquity of colliding flows in the interstellar medium, shock reorientation may be relevant to the formation of filaments normal to magnetic fields

    Aspect Ratio Dependence of the Free-Fall Time for Non-Spherical Symmetries

    Get PDF
    We investigate the collapse of non-spherical substructures, such as sheets and filaments, which are ubiquitous in molecular clouds. Such non-spherical substructures collapse homologously in their interiors but are influenced by an edge effect that causes their edges to be preferentially accelerated. We analytically compute the homologous collapse timescales of the interiors of uniform-density, self-gravitating filaments and find that the homologous collapse timescale scales linearly with the aspect ratio. The characteristic timescale for an edge driven collapse mode in a filament, however, is shown to have a square root dependence on the aspect ratio. For both filaments and circular sheets, we find that selective edge acceleration becomes more important with increasing aspect ratio. In general, we find that lower dimensional objects and objects with larger aspect ratios have longer collapse timescales. We show that estimates for star formation rates, based upon gas densities, can be overestimated by an order of magnitude if the geometry of a cloud is not taken into account.Comment: 10 pages, 2 figures, accepted by ApJ, minor grammatical errors fixe

    The JCMT Transient Survey : stochastic and secular variability of protostars and disks in the submillimeter region observed over 18 months

    Get PDF
    We analyze results from the first 18 months of monthly submillimeter monitoring of eight star-forming regions in the JCMT Transient Survey. In our search for stochastic variability in 1643 bright peaks, only the previously identified source, EC 53, shows behavior well above the expected measurement uncertainty. Another four sources—two disks and two protostars—show moderately enhanced standard deviations in brightness, as expected for stochastic variables. For the two protostars, this apparent variability is the result of single epochs that are much brighter than the mean. In our search for secular brightness variations that are linear in time, we measure the fractional brightness change per year for 150 bright peaks, 50 of which are protostellar. The ensemble distribution of slopes is well fit by a normal distribution with σ ~ 0.023. Most sources are not rapidly brightening or fading at submillimeter wavelengths. Comparison against time-randomized realizations shows that the width of the distribution is dominated by the uncertainty in the individual brightness measurements of the sources. A toy model for secular variability reveals that an underlying Gaussian distribution of linear fractional brightness change σ = 0.005 would be unobservable in the present sample, whereas an underlying distribution with σ = 0.02 is ruled out. Five protostellar sources, 10% of the protostellar sample, are found to have robust secular measures deviating from a constant flux. The sensitivity to secular brightness variations will improve significantly with a sample over a longer time duration, with an improvement by factor of two expected by the conclusion of our 36 month survey.Publisher PDFPeer reviewe

    The JCMT Transient Survey : identifying submillimeter continuum variability over several year timescales using archival JCMT Gould Belt Survey observations

    Get PDF
    Investigating variability at the earliest stages of low-mass star formation is fundamental in understanding how a protostar assembles mass. While many simulations of protostellar disks predict non-steady accretion onto protostars, deeper investigation requires robust observational constraints on the frequency and amplitude of variability events characterized across the observable SED. In this study, we develop methods to robustly analyze repeated observations of an area of the sky for submillimeter variability in order to determine constraints on the magnitude and frequency of deeply embedded protostars. We compare 850 μm JCMT Transient Survey data with archival JCMT Gould Belt Survey data to investigate variability over 2–4 year timescales. Out of 175 bright, independent emission sources identified in the overlapping fields, we find seven variable candidates, five of which we classify as Strong, and the remaining two we classify as Extended to indicate that the latter are associated with larger-scale structure. For the Strong variable candidates, we find an average fractional peak brightness change per year of |4.0| % yr-1, with a standard deviation of 2.7 % yr-1. In total, 7% of the protostars associated with 850 μm emission in our sample show signs of variability. Four of the five Strong sources are associated with a known protostar. The remaining source is a good follow-up target for an object that is anticipated to contain an enshrouded, deeply embedded protostar. In addition, we estimate the 850 μm periodicity of the submillimeter variable source, EC 53, to be 567 ± 32 days, based on the archival Gould Belt Survey data.PostprintPeer reviewe

    Cross-National Differences in Victimization : Disentangling the Impact of Composition and Context

    Get PDF
    Varying rates of criminal victimization across countries are assumed to be the outcome of countrylevel structural constraints that determine the supply ofmotivated o¡enders, as well as the differential composition within countries of suitable targets and capable guardianship. However, previous empirical tests of these ‘compositional’ and ‘contextual’ explanations of cross-national di¡erences have been performed upon macro-level crime data due to the unavailability of comparable individual-level data across countries. This limitation has had two important consequences for cross-national crime research. First, micro-/meso-level mechanisms underlying cross-national differences cannot be truly inferred from macro-level data. Secondly, the e¡ects of contextual measures (e.g. income inequality) on crime are uncontrolled for compositional heterogeneity. In this paper, these limitations are overcome by analysing individual-level victimization data across 18 countries from the International CrimeVictims Survey. Results from multi-level analyses on theft and violent victimization indicate that the national level of income inequality is positively related to risk, independent of compositional (i.e. micro- and meso-level) di¡erences. Furthermore, crossnational variation in victimization rates is not only shaped by di¡erences in national context, but also by varying composition. More speci¢cally, countries had higher crime rates the more they consisted of urban residents and regions with lowaverage social cohesion.
    corecore