300 research outputs found

    Chameleon stars

    Full text link
    We consider a gravitating spherically symmetric configuration consisting of a scalar field non-minimally coupled to ordinary matter in the form of a perfect fluid. For this system we find static, regular, asymptotically flat solutions for both relativistic and non-relativistic cases. It is shown that the presence of the non-minimal interaction leads to substantial changes both in the radial matter distribution of the star and in the star's total mass. A simple stability test indicates that, for the choice of parameters used in the paper, the solutions are unstable.Comment: final version, to be published in PR

    Electronic and photoconductive properties of ultrathin InGaN photodetectors

    Get PDF
    We report on the compositional dependencies of electron transport and photoconductive properties for ultrathin metal-semiconductor-metal photodetectors based on In-rich InxGa1-xN alloys. For a In0.64Ga0.36N/GaN structure, the rise time close to the RC constant at low fields has been measured along with a transparency of similar to 77% and an absorbance of similar to 0.2 at a wavelength of 632 nm. The electron density profiles and low-field mobilities for different compositions of InGaN have been calculated by numerically solving the Schrodinger and Poisson equations and applying the ensemble Monte Carlo method, respectively. It was demonstrated that in ultrathin InxGa1-xN/GaN (0.5 < x < 1) heterostructures, in contrast to bulk InN exhibiting a strong surface electron accumulation, free electrons mostly tend to accumulate at the buried InGaN/GaN interface. We have also found that the low-field mobility in the InGaN/GaN heterostructures is strongly limited by the buried interface roughness which causes more than 95% of all scattering events occurred by two-dimensional electron transport under low electric field conditions.Comisión Interministerial de Ciencia y Tecnología (CICYT) MAT2007-60643 Españ

    Fermions and Loops on Graphs. II. Monomer-Dimer Model as Series of Determinants

    Full text link
    We continue the discussion of the fermion models on graphs that started in the first paper of the series. Here we introduce a Graphical Gauge Model (GGM) and show that : (a) it can be stated as an average/sum of a determinant defined on the graph over Z2\mathbb{Z}_{2} (binary) gauge field; (b) it is equivalent to the Monomer-Dimer (MD) model on the graph; (c) the partition function of the model allows an explicit expression in terms of a series over disjoint directed cycles, where each term is a product of local contributions along the cycle and the determinant of a matrix defined on the remainder of the graph (excluding the cycle). We also establish a relation between the MD model on the graph and the determinant series, discussed in the first paper, however, considered using simple non-Belief-Propagation choice of the gauge. We conclude with a discussion of possible analytic and algorithmic consequences of these results, as well as related questions and challenges.Comment: 11 pages, 2 figures; misprints correcte

    Transport coefficients of O(N) scalar field theories close to the critical point

    Get PDF
    We investigate the critical dynamics of O(N)-symmetric scalar field theories to determine the critical exponents of transport coefficients as a second-order phase transition is approached from the symmetric phase. A set of stochastic equations of motion for the slow modes is formulated, and the long wavelength dynamics is examined for an arbitrary number of field components, NN, in the framework of the dynamical renormalization group within the ϵ\epsilon expansion. We find that for a single component scalar field theory, N=1, the system reduces to the model C of critical dynamics, whereas for N>1N>1 the model G is effectively restored owing to dominance of O(N)-symmetric charge fluctuations. In both cases, the shear viscosity remains finite in the critical region. On the other hand, we find that the bulk viscosity diverges as the correlation length squared, for N=1, while it remains finite for N>1N>1.Comment: revised for publication in PR

    Casimir scaling as a test of QCD vacuum

    Get PDF
    Recent accurate measurements of static potentials between sources in various representations of the gauge group SU(3) performed by G.Bali provide a crucial test of the QCD vacuum models and different approaches to confinement. The Casimir scaling of the potential observed for all measured distances implies strong suppression of higher cumulant contributions. The consequences for the instanton vacuum model and the spectrum of the QCD string are also discussed.Comment: LaTeX, 15 pages, 1 figur

    Weakening of cold halocline layer exposes sea ice to oceanic heat in the eastern Arctic Ocean

    Get PDF
    A 15-yr duration record of mooring observations from the eastern (>70°E) Eurasian Basin (EB) of the Arctic Ocean is used to show and quantify the recently increased oceanic heat flux from intermediate-depth (~150–900 m) warm Atlantic Water (AW) to the surface mixed layer and sea ice. The upward release of AW heat is regulated by the stability of the overlying halocline, which we show has weakened substantially in recent years. Shoaling of the AW has also contributed, with observations in winter 2017–18 showing AW at only 80 m depth, just below the wintertime surface mixed layer, the shallowest in our mooring records. The weakening of the halocline for several months at this time implies that AW heat was linked to winter convection associated with brine rejection during sea ice formation. This resulted in a substantial increase of upward oceanic heat flux during the winter season, from an average of 3–4 W m−2 in 2007–08 to >10 W m−2 in 2016–18. This seasonal AW heat loss in the eastern EB is equivalent to a more than a twofold reduction of winter ice growth. These changes imply a positive feedback as reduced sea ice cover permits increased mixing, augmenting the summer-dominated ice-albedo feedback

    Tree-level (pi, K)-amplitude and analyticity

    Full text link
    We consider the tree-level amplitude, describing all 3 channels of the binary (pi ,K)-reaction, as a meromorphic polynomially bounded function of 3 dependent complex variables. Relying systematically on the Mittag-Leffler theorem, we construct 3 convergent partial fraction expansions, each one being applied in the corresponding domain. Noting, that the mutual intersections of those domains are nonempty, we realize the analytical continuation. It is shown that the necessary conditions to make such a continuation feasible, are the following: 1) The only parameters completely determining the amplitude are the on-shell couplings and masses; 2) These parameters are restricted by a certain (infinite) system of bootstrap equations; 3) The full cross-symmetric amplitude takes the typically dual form, the Pomeron contribution being taken into account; 4)This latter contribution corresponds to a nonresonant background, which, in turn, is expressed in terms of cross-channel resonances parameters. It is demonstrated also, that the Chiral Symmetry provides a unique scale for the mentioned parameters, the resonance saturation effect appearing as a direct consequence of the above results

    On the seasonal cycles observed at the continental slope of the Eastern Eurasian Basin of the Arctic Ocean

    Get PDF
    The Eurasian Basin (EB) of the Arctic Ocean is subject to substantial seasonality. We here use data collected between 2013 and 2015 from six moorings across the continental slope in the eastern EB and identify three domains, each with its own unique seasonal cycle: 1) The upper ocean (<100 m), with seasonal temperature and salinity differences of Δθ = 0.16°C and ΔS = 0.17, is chiefly driven by the seasonal sea ice cycle. 2) The upper-slope domain is characterized by the influence of a hydrographic front that spans the water column around the ~750-m isobath. The domain features a strong temperature and moderate salinity seasonality (Δθ = 1.4°C; ΔS = 0.06), which is traceable down to ~600-m depth. Probable cause of this signal is a combination of along-slope advection of signals by the Arctic Circumpolar Boundary Current, local wind-driven upwelling, and a cross-slope shift of the front. 3) The lower-slope domain, located offshore of the front, with seasonality in temperature and salinity mainly confined to the halocline (Δθ = 0.83°C; ΔS = 0.11; ~100–200 m). This seasonal cycle can be explained by a vertical isopycnal displacement (ΔZ ~ 36 m), arguably as a baroclinic response to sea level changes. Available long-term oceanographic records indicate a recent amplification of the seasonal cycle within the halocline layer, possibly associated with the erosion of the halocline. This reduces the halocline’s ability to isolate the ocean surface layer and sea ice from the underlying Atlantic Water heat with direct implications for the evolution of Arctic sea ice cover and climate
    • …
    corecore