We continue the discussion of the fermion models on graphs that started in
the first paper of the series. Here we introduce a Graphical Gauge Model (GGM)
and show that : (a) it can be stated as an average/sum of a determinant defined
on the graph over Z2 (binary) gauge field; (b) it is equivalent
to the Monomer-Dimer (MD) model on the graph; (c) the partition function of the
model allows an explicit expression in terms of a series over disjoint directed
cycles, where each term is a product of local contributions along the cycle and
the determinant of a matrix defined on the remainder of the graph (excluding
the cycle). We also establish a relation between the MD model on the graph and
the determinant series, discussed in the first paper, however, considered using
simple non-Belief-Propagation choice of the gauge. We conclude with a
discussion of possible analytic and algorithmic consequences of these results,
as well as related questions and challenges.Comment: 11 pages, 2 figures; misprints correcte