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Abstract:   43 

A 15-year duration record of mooring observations from the eastern (>70oE) Eurasian Basin 44 

(EB) of the Arctic Ocean is used to show and quantify the recently increased oceanic heat flux 45 

from intermediate-depth (~150-900 m) warm Atlantic Water (AW) to the surface mixed layer 46 

(SML) and sea ice. The upward release of AW heat is regulated by the stability of the overlying 47 

halocline, which we show has weakened substantially in recent years. Shoaling of the AW has 48 

also contributed, with observations in winter 2017-2018 showing AW at only 80 m depth, just 49 

below the wintertime surface mixed layer (SML), the shallowest in our mooring records. The 50 

weakening of the halocline for several months at this time implies that AW heat was linked to 51 

winter convection associated with brine rejection during sea ice formation.  This resulted in a 52 

substantial increase of upward oceanic heat flux during the winter season, from an average of 3-4 53 

W/m2 in 2007-2008 to >10 W/m2 in 2016-2018. This seasonal AW heat loss in the eastern EB is 54 

equivalent to a more than a two-fold reduction of winter ice growth. These changes imply a 55 

positive feedback as reduced sea ice cover permits increased mixing, augmenting the summer-56 

dominated ice-albedo feedback. 57 

 58 

 59 

 60 

 61 
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1. Introduction 63 

In recent decades there has been a dramatic decline in seasonal sea ice extent in the Arctic 64 

Ocean, with a more recent year-around decline in sea ice extent, area and volume (Kwok 2018; 65 

Stroeve and Notz 2018). This change has shifted the local radiative balance resulting in a 66 

positive ice-albedo feedback mechanism as increasing lead fraction and surface melt pond areas 67 

in decaying Arctic sea ice facilitate enhanced upper‐ocean solar heating and more rapid melting 68 

of ice floes (e.g., Perovich et al. 2008; Toole et al. 2010). Moreover, it was hypothesized that the 69 

declining sea ice has larger scale hemispheric impacts on the North Atlantic Oscillation and, in 70 

consequence, mid-latitude weather patterns (e.g., Francis et al. 2017; Garcia-Serrano et al. 2015; 71 

Kolstad and Screen 2019).    72 

     Heat associated with oceanic currents originating from lower latitudes provides an important, 73 

and year-round, source of heat to the Arctic Ocean (e.g., Carmack et al. 2015). The dominant 74 

external source of oceanic heat is the warm (temperature >0oC) and salty water of Atlantic origin 75 

(Atlantic Water, AW) which is distributed throughout the deep basins at intermediate depths 76 

(~150-900 m, Fig. 1) and holds sufficient heat to melt the Arctic sea ice 3-4 times over (Carmack 77 

et al. 2015). Across much of the eastern (>70oE) Eurasian Basin (EB) this heat is isolated from 78 

the surface, and hence the sea ice, by large vertical density gradients associated with the Arctic 79 

halocline (60-150 m, Fig. 1). The presence of the halocline impedes the transport of AW heat 80 

upward towards the surface across much of the Arctic Ocean (e.g., Fer 2009). The exception to 81 

this is the western (<70oE) Nansen Basin where substantial turbulent mixing linked to the tides 82 

(Fer et al. 2010; Padman and Dillion 1991; Rippeth et al. 2015; Renner et al. 2019) and wind 83 

events (e.g. Provost et al., 2017; Graham et al., 2019) supports heat fluxes in excess of 50 W m-2  84 
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 4 

     Inflowing AW is warming (Barton et al. 2018) driving a regime shift in sea ice cover over the 85 

past decade in the Barents Sea (Onarheim et al. 2018). There is also a growing body of evidence 86 

that the characteristics of the Arctic halocline are changing; for example, the halocline has 87 

weakened in the eastern EB since the 1970s (Steele and Boyd 1998; Polyakov et al. 2010). These 88 

changes have accelerated over the past decade (Polyakov et al. 2020a) with continuous time 89 

series from moored instruments capturing the significant weakening of the cold halocline layer 90 

(the upper part of the halocline with temperatures near freezing and negligible vertical 91 

temperature gradient) and shoaling of the AW in 2013-2015 (Polyakov et al. 2017).   92 

      The combination of weaker stratification and shoaling of the AW in the EB, coupled with the 93 

loss of sea ice, has allowed progressively deeper winter ventilation in the eastern EB in recent 94 

years (Polyakov et al. 2017). This process further enhances the annually averaged upward AW 95 

heat fluxes. The shift in sea ice state and upper ocean stratification to conditions previously 96 

unique to the western Nansen Basin has been termed ‘atlantification’ (Polyakov et al. 2017) and 97 

represents a transition toward a new Arctic climate state, in which the geographical influence of 98 

the AW heat on sea ice volume is spreading eastwards. 99 

     Since the increased oceanic heat fluxes associated with atlantification drive sea ice melt, and 100 

reduced sea ice increases oceanic heat fluxes through increased convective entrainment in 101 

winter, this process represents a positive ice/ocean-heat feedback mechanism. This mechanism is 102 

analogous and complementary to the ice-albedo feedback, in which atmospheric warming leads 103 

to a reduction of ice and snow coverage and decreasing albedo, resulting in further snow and sea 104 

ice retreat (Manabe and Stouffer 1980). 105 

     The strength of the ice/ocean-heat feedback is determined by the vertical flux of AW heat 106 

across the halocline into the surface-forced seasonal convective layer. Polyakov et al. (2017) 107 
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estimated seasonal changes of heat content Q in the eastern EB halocline (65-130 m) and an 108 

equivalent divergent heat flux (the difference of fluxes at two depth levels for which a 1D 109 

equation of heat balance for a unit-area water column is integrated) of Fh ~12 W m-2 over this 110 

depth range for winter 2013-2014, and ~8 W m-2 for winter 2014-2015. They argued that these 111 

inferred values of Fh exceeded previous regional estimates (e.g., Lenn et al. 2009; Polyakov et 112 

al. 2013) by a factor of 2-4 and potentially account for an additional loss of up to 18-40 cm of 113 

sea ice over this period of time associated with the increase in upward AW heat transport.  In 114 

consequence the impact of the oceanic heat flux on sea ice formation in 2013-2015 was 115 

comparable to that of the atmospheric thermodynamic forcing (Polyakov et al. 2017). 116 

    The aim of this paper is to quantify the changes in the upper ocean heat content, and the 117 

consequent release of heat from the AW up into the halocline and to the surface mixed layer in the 118 

key eastern Eurasian Basin of the Arctic Ocean. We improve on the Polyakov et al. (2017) study 119 

by including new data collected over the period 2015-2018 to quantify changes in the upper ocean 120 

heat content, and the consequent release of heat from the AW up into the halocline and to the 121 

surface mixed layer in the EB. We then compare these regional estimates with earlier estimates.  122 

2. Data 123 

Our analyses utilize observations of ocean temperature, salinity, and currents from moorings 124 

deployed in the eastern EB (Fig. 2, Table 1). Observations at the M14 mooring site began in 125 

August 2002, with several co-located moorings deployed and recovered annually prior to 2009, 126 

and longer duration of deployments since 2013 (Table 1).  127 

     Moorings deployed in summer 2013 and recovered in summer 2015 provided two-year long 128 

records for most instruments except for the M15 upper ocean Acoustic Doppler Current Profiler 129 

(ADCP), which worked for 10 months only. Mooring M3 located off Severnaya Zemlya, was 130 
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deployed at water depth of 1350 m. Six moorings (M11-M16) formed a ~350-km cross-slope 131 

section spanning from the 250 m to 3400 m isobaths along 126°E. Topographically steered 132 

boundary current flows along slope across this section (Pnyushkov et al. 2015, 2018). Averaged 133 

over 2013-2015, the maximum current speed of ~11 cm/s was found at the shallowest mooring 134 

M11 (on the 250 m isobath), with only ~0.5 cm/s in the deep basin at moorings M15 and M16. 135 

The AW core defined by the maximum water temperature is typically located at the M15 136 

mooring site at a depth of ~250 m.  137 

     Deployment of moorings in 2015-2018 repeated the mooring distribution used for 2013-2015 138 

except that the M16 mooring was not re-deployed (Table 1). Almost all mooring instruments 139 

provided full three-year long records; the M13 McLane Moored Profiler (MMP) stopped 140 

recording after two years. In addition, a short-term mooring, M14-short, was deployed for 18 days 141 

only (September 2–20, 2018) close to the M14 climatologic mooring site (Table 1). The short-142 

term mooring was designed to provide current and CTD data with the most rapid possible 143 

sampling rate in the upper 200 m. 144 

     Mooring Conductivity-Temperature-Depth (CTD) data: The MMP-based moorings at the M14 145 

mooring location in 2002-2009 collected temperature, salinity and current velocity profiles once 146 

per day. Four 2013-2015 moorings (M12, M13, M15, and M16) and two 2015-2018 moorings 147 

(M13 and M15) provided vertical MMP profiles with two-day sampling interval with a ~0.25 m 148 

spacing. The MMPs on most moorings sampled the 50–700 m depth range; however, the 2015-149 

2018 M15 mooring missed its target depth and the MMP record only reached to ~170 m below 150 

the surface. The MMP on the M14-short mooring sampled about every 18 minutes and obtained 151 

1369 profiles. The MMP temperature and conductivity calibrated measurement accuracies are 152 

±0.002˚C and ±0.002 mS/cm.  153 
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 7 

     The moorings M11, M12, M14 and M3 with no MMP profilers deployed in 2013–2018, as 154 

well as mooring M1g, deployed about 12 km from mooring M14 in 2008 –2010 (Fig. 2, Table 1) 155 

were equipped with Seabird SBE-37 CTD instruments and provided records of conductivity, 156 

temperature and pressure with sampling interval of one hour or shorter, with measurement 157 

accuracies for temperature and conductivity of ±0.002˚C and ±0.003 mS/cm, respectively.  158 

     Mooring current data: Most moorings used in this analysis included 300 kHz Acoustic 159 

Doppler Current Profilers (ADCP) targeting the upper 50-60 m of the water column (Table 1). 160 

Moorings with no MMP were also equipped by long-range ADCP 75 kHz covering deeper layers 161 

(Table 1). ADCPs provided current velocities, averaged over 2-m (prior to 2013) or 4-m (after 162 

2013) vertical cells, with 1-h time resolution. The manufacturer's estimates for ADCP accuracies 163 

are 0.5% of measured speed and 2° for current direction.  164 

     Moorings equipped with MMPs provided current velocity profiles with above mentioned 165 

profiling intervals and 0.25 m vertical resolution. The MMPs were equipped with a Falmouth 166 

Scientific Inc. (FSI) micro-CTD sensor in 2002-2004 and a Sea-Bird Electronics (SBE) 41CP 167 

CTD sensor starting from 2004, with temperature and conductivity measurement accuracies of 168 

about ±0.002˚C and ±0.0003 S/m, respectively. Prior to 2013, the MMPs carried the FSI 169 

Acoustic Current Meters (ACM); after 2013, the ACMs were substituted with the FSI ACM-170 

PLUS-MP (http://www.falmouth.com/product-information.html).  The velocity precision of the 171 

FSI ACM (ACM-PLUS-MP) carried on the MMP are reported to be ±2% (1%) of reading and 172 

±0.5 cm/s for velocity resolution. Compass accuracy is ±2˚. All MMP sensors were calibrated 173 

before their deployment and immediately after their recovery using McLane facilities.  174 

     Ship-borne CTD data: Mooring observations were complemented by repeated hydrographic 175 

profiles collected using a Seabird SBE911plus CTD system in 2013, 2015 and 2018 at M14 176 
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mooring site (Fig. 2). The effective vertical resolution, considering the different sensor 177 

characteristics, is about 25 cm. Individual temperature and conductivity measurements are 178 

accurate to ±0.002˚C and ±0.0003 S/m.  179 

3. Methods 180 

     Defining a proxy for Richardson (Ri) number: Ri is a measure of the stability of the water 181 

column, ie. when Ri < 0.25 the vertical shear in the flow is sufficient to generate instability and 182 

turbulent mixing. As such Ri estimates provide a useful indicator for the likelihood of shear 183 

instability/ mixing. The correct scale for the estimation of Ri is the Ozmidov scale (which in this 184 

case we estimate to be O(0.1m)). However, the vertical resolution of the Ri estimate is limited by 185 

the positions of instruments on the moorings which have a vertical resolution of 20m.  Whilst the 186 

20 m Ri estimates are likely to smooth out the fine structure of individual instabilities, we argue 187 

that the smaller the large-scale Ri value is, the greater the likelihood of shear instability (and so 188 

turbulence and mixing). As such the 20m Ri provides a useful proxy for the likelihood of shear 189 

instability. Moreover, trends in the 20m (proxy) Ri estimate will expose trends in the likelihood 190 

of shear instability, the key interpretation here. This approach is supported by direct comparisons 191 

of dissipation and low resolution Ri estimates (e.g. Mead Silvester et al., 2014). 192 

     The mooring-based estimates of Ri (Fig. 5) are based on MMP measurements of stratification 193 

and velocity. Stratification over the 100-140 m layer is quantified using buoyancy frequency (N), 194 

N2= –(g/o)/z, where  is the potential density of seawater, o is the reference density (1030 195 

kg m-3), and g is the acceleration due to gravity. The limited depth range of 100-140m was 196 

chosen due to insufficient data coverage in early years (see Table 1). The Ri proxy was 197 

estimated as Ri = N2/|Uz|
2, where |Uz| is the magnitude of the vertical shear of the horizontal 198 
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currents; |Uz| and N were calculated averaging gradients over 20 m vertical scale for all points 199 

within the 100-140 m depth range. 200 

     Defining timing and depth of seasonal upper ocean ventilation and divergent heat flux Fh : 201 

For this analysis, temperature observations carried out by M12, M13, M14 and M3 moorings in 202 

2013–2018 were used. SBE-37 data from non-MMP moorings M12 (2015–2018), M13, M14 and 203 

M3 were complemented by MMP profiles from M12 (2013 –2015) mooring. SBE-37 204 

observations were linearly interpolated to match the MMP vertical resolution. We are interested 205 

in the analysis of seasonal ventilation of the halocline. Accordingly, temperature observations 206 

were filtered using wavelet transformations to keep seasonal variations only (and thus different 207 

temporal sampling by MMP and SBE-37 did not affect our results). A standard package of 208 

wavelet programs was used based on the DOG Mother function. Estimates of heat content (Q, 209 

J/m3, with freezing point taken as a reference temperature at a given salinity) for the halocline 210 

(65-140 m) are shown in Fig. 6. To assure that the use of SBE-37 point measurements with 211 

relatively coarse vertical resolution and continuous MMP profiles for estimates of Q did not 212 

affect our results we calculated Q using MMP temperature record from M12 mooring (2015–213 

2018) twice, first time with original MMP resolution and another one with sub-sampled coarser 214 

resolution matching SBE-37 depth levels (Table 1). Results of Q integrated over the halocline 215 

depth range and averaged in time over the entire record length differed by 8%. 216 

     The aim is to define the timing and amplitude of upward heat flux associated with winter 217 

ventilation. To this end, we identified timing and amplitude of the maximum Q (as accumulated 218 

over the warm phase of the seasonal cycle) and the minimum of Q (associated with winter 219 

ventilation) using Q vertically integrated over 65-140 m. The depth of the ventilation is defined 220 
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as the deepest point where a distinct minimum of Q was found. The maximum of vertically 221 

integrated Q was then re-calculated using the depth of ventilation.  222 

      Following Polyakov et al. (2017), we limited the boundary of the winter ventilation layer to 223 

140 m. For some years, the boundary of the layer was deeper (as shown in Fig. 6 by the black 224 

horizontal segments located at the very bottom of the panels with Q). Therefore, our choice of 225 

the ventilation layer is conservative and estimates of divergent heat fluxes Fh derived from 226 

change of heat content Q during each winter season represent the lower bound, consistent with 227 

the objectives of the study. For the upper boundary of the layer for which Q is estimated, we 228 

selected the depth 65 m, chosen because this best determines the halocline layer in which heat 229 

from the AW is stored and released (Polyakov et al. 2013, 2017).  We evaluated the sensitivity of 230 

our estimates to the choice of the boundary of the ventilation layer by calculating Fh for 65-140 231 

m and 65-150 m layers. The 10 m increase in layer thickness increases Fh by less than 8%.  232 

     Following Polyakov et al. (2013), we estimated Fh (W/m2) between two depth levels as the 233 

change, in time, of vertically integrated Q. This approach is based on the assumption that all 234 

change in heat content is due to vertical exchange (so 1D). Note that these values are flux 235 

differences between two depth levels, and total heat fluxes may be larger than these values due to 236 

additional non-divergent heat transports; thus, our inferred estimates of divergent heat fluxes 237 

represent lower bounds for the total heat flux (for details, see Polyakov et al. 2013). 238 

4. Results 239 

a. AW warming and weakening of halocline stratification in the eastern Eurasian Basin 240 

Time series of the AW temperature show significant interannual variability (Fig. 3a). The AW in 241 

the eastern EB began warming in the early 2010s, with the AW temperature in 2018 being, on 242 
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average, 0.5–0.7oC higher than in 2011 (Fig. 3a). This recent warming is particularly noticeable 243 

at shallower depths, with the increase in temperature at 150 m exceeding 1.5oC between 2011 244 

and 2018. This warming over the depth range 150-750 m between September 2013 – May 2014 245 

and September 2016 – May 2017 is partially associated with shoaling of the upper halocline 246 

boundary (Fig. 3c) and a substantial increase in AW layer thickness (Fig. 4).   247 

     Cross-correlation analysis of time series of AW temperature measured at 250m from 1997-248 

2018 in Fram Strait, the entry point of AW into the Arctic, and from 2002-2018 in the eastern EB 249 

(red time series in Fig. 3a) shows the strongest  correlation, R = 0.67, for a lag of 682 days (Fram 250 

Strait series leads, Fig. 3b).  The fit between the two time series is better over the last 7-8 years 251 

than it is over the earlier period. The ~2 year lag suggests that warm pulses of AW that entered 252 

the Arctic Ocean through Fram Strait, are traveling towards the eastern EB at a speed 2-2.5 time 253 

faster than that estimated for a warm AW pulse which entered the eastern EB in 2004  (Polyakov 254 

et al. 2005). This implies that the rate of advection has increased over time. However, noisy data 255 

due to gaps in the EB record preclude meaningful statistical analysis using just the early part of 256 

the time series. Assuming that the lagged correlation between the two time series will persist in 257 

the near future, the latest part of the Fram Strait series (not shown) implies that the AW 258 

temperature in the eastern EB reached its peak in late 2018 ( these data are not yet available) and 259 

will slowly decrease over the next 1-2 years. 260 

     Temperature and salinity profiles in the eastern EB from CTD during 2013-2018 and MMP 261 

during 2003-2018 recorded a decline of stratification (N2) over the 110-140m depth range of the 262 

halocline (Figs. 1c, 5a,b) which may be a result of both the shoaling of AW and weakening of 263 

halocline stratification. Polyakov et al. (2018) used available potential energy defined for the 264 

variable-depth halocline to show overall weakening stratification in the EB since the 1980s, with 265 
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accelerated tendencies in the 2010s compared with the 2000s. However, the substantial 266 

weakening of halocline stability from 2013 to 2015 (Polyakov et al. 2017) which continued in 267 

2015–2018, and which was also partially associated with shoaling of the AW (Fig. 4) found at 80 268 

m depth, as inferred from the most recent observations in winter 2017-2018 (Figs. 3c). This 269 

represents the shallowest depth the AW has been observed in the 15 years of mooring 270 

deployments. As these estimates used a linear interpolation of CTD time series made at 38m and 271 

107m at mooring M14 , we are not able to definitively conclude that the cold halocline layer was 272 

present (albeit very thin) during the winter of 2017–2018. However, the record suggests the 273 

extreme thinning (or even absence) of the Arctic cold halocline layer for several months at this 274 

time (Figs. 3c, 4) implying that AW heat was exposed to winter convection associated with sea 275 

ice formation and brine rejection.    276 

b. Increased oceanic heat fluxes and ice loss in the eastern Eurasian Basin 277 

The weakening stratification, shoaling of the AW layer and increase of current shear in recent 278 

years (e.g., Polyakov et al. 2020b) have altered the seasonal cycle of upward AW heat transport 279 

(Fig. 6). Estimated change in heat content (Q) from the halocline (65-140 m) during winter, 280 

averaged at four moorings, is equivalent to mean divergent heat fluxes (Section 3) of 281 

Fh = 12.0±5.5, 3.5±2.2, 3.0±1.9, 12.9±1.7 and 20.6±6.8 W/m2 for five winters from 2013-2014 282 

through 2017-2018 (Figs. 6, 7). For three of these winters (2013-2014, 2016-2017, and 2017-283 

2018), Fh greatly exceeded (3- to 5-fold) the previous estimates derived from summer 2007-284 

2008 microstructure observations over the Laptev Sea slope (Lenn et al. 2009; Polyakov et al. 285 

2019) and winter 2009-2010 ITP-37 observations in the central Amundsen Basin (Polyakov et al. 286 

2013). For the winters of 2014-2015 and 2015-2016, estimates of Fh were comparable to 287 

upward heat fluxes of about 3-4 W m-2 from 2007-2008. We attribute the decrease of Fh in 288 
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2015-2016 (cf. Polyakov et al. 2017) to an anomalous freshening event in the upper ocean. This 289 

freshening is evident in data collected at mooring M13 (Fig. 8) which shows that strong upper 290 

(<75 m) ocean stratification (evidenced by high N2 values) in 2016 precluded seasonal 291 

ventilation beyond the SML. Stronger stratification in winter 2015 (compared with winters of 292 

2014 and 2017, Fig. 8d) limited seasonal ventilation to the upper ~115m, thus not extending 293 

deeply enough to reach the main pool of AW heat (Fig. 8b). In consequence the heat flux is 294 

limited. The strongest heat flux is inferred for winter 2017-2018 and is associated with the 295 

weakest stratification (Fig. 5), providing further evidence for the key role of stratification in 296 

mediating upper ocean ventilation.  297 

     The new estimates of seasonal ventilation of heat evaluated from the Fh for the winter 298 

seasons of 2016-2017 and 2017-2018 are equivalent to 78±4 and 93±29 cm reductions in ice 299 

growth, respectively, for the eastern EB (Fig. 7), given that one year of a heat flux of 1 W/m2 in 300 

isolation is equivalent to about 10 cm of sea ice loss. This represents a two-fold increase in the 301 

sea ice loss rate compared to that estimated for 2013-14 (54 cm) and 2014-2015 (40 cm) 302 

(Polyakov et al. 2017), and so partially explains intensified eastern EB sea ice loss in more recent 303 

years (Onarheim et al. 2018; Stroeve and Notz 2018). 304 

     Time series from the shallower moorings (M12 and M13) show strong seasonal variations in 305 

the AW core temperature, which may be associated with seasonal displacement of the AW core 306 

relative to the slope (e.g., Baumann et al. 2018). However, the consistently low correlation 307 

between Q and the AW core temperature records, for all mooring sites (Fig. 9), implies that 308 

cross-slope shifts in AW temperature core are not a major driver of the seasonal variation in Q in 309 

the halocline. The correlation between Q and AW core temperature at the shallowest mooring 310 

(M12) where currents are strongest is also weak (R = 0.29) indicating that advection does not 311 
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provide a significant contribution to the seasonal variability of Q. This evidence is consistent 312 

with the results of Polyakov et al. (2017) who argued that the in-phase seasonal maxima and 313 

minima of wavelet transforms of Q at all mooring sites suggests that the observed winter 314 

ventilation is driven by surface cooling and sea-ice formation—and not by lateral advection. 315 

They reasoned that spatially varying water transports across the slope, ranging from 13 cm/s 316 

(measured over the upper continental slope (250-700 m) by moorings M11 and M12) to 1-2 cm/s 317 

(measured at 2700 m and deeper, at mooring locations M14, M15 and M16) make the in-phase 318 

pattern of the seasonal signal at all moorings impossible to explain using the advective 319 

mechanism. Furthermore, mooring M16 which was farthest from the near-slope boundary 320 

current, in the ocean interior, yielded estimates for Fh which magnitudes and phases are 321 

consistent with estimates from the other moorings deployed on the eastern EB continental slope 322 

in 2013–2015 (Polyakov et al., 2017).  323 

     The one-dimensional approach adopted here can be further validated by considering the 324 

magnitude of the lateral temperature gradient necessary to explain the estimated heat flux, if 325 

advection were to dominate. In assuming an along slope current speed of 2 cm/s requires that the 326 

lateral temperature gradient dT/dx must be five times larger than that observed Fram Strait – 327 

central Laptev Sea slope temperature decrease of 1.8oC [= 3.0 – 1.2] over ~2400km so dT/dx = 328 

0.75×10-3 ºC/km to explain the estimated heat flux. Another potential contributor to the observed 329 

ventilation rates are lateral eddy fluxes. Ventilation of halocline by eddies is, however, difficult 330 

to quantify using available data. Nevertheless, considering that the typical time of eddy passing 331 

across the mooring site is about a week with the average frequency about one eddy per 332 

month (Pnyushkov et al., 2018b), it is unlikely that eddies can significantly contribute to changes 333 
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of the heat content at seasonal time scales. These considerations imply the uncertainty in the 1D 334 

flux calculation from lateral advection and diffusion is small.   335 

5. Discussion and Conclusions 336 

Time series measurements from a 15-year mooring record in the eastern EB of the Arctic Ocean 337 

demonstrate that the previously identified weakening of stratification over the halocline, which 338 

isolates intermediate depth AW from the sea surface, over the period 2003 -  2015 (e.g., 339 

Polyakov et al. 2017, 2018), has continued at an increasing rate in more recent years (2015-340 

2018). In consequence, oceanic heat fluxes for the winters of 2016-2018 are estimated to be 341 

greater than 10 Wm-2.  These fluxes are substantially larger than the previously reported winter 342 

estimates for the region for 2007-2008 of 3-4 Wm-2 (Lenn et al., 2009; Polyakov et al., 2019), 343 

and comparable to the estimates for the winters of 2013-2015 (Polyakov et al. 2017), implying a 344 

significant enhancement of the role of oceanic heat in this region in recent years.  345 

Moreover, the increased vertical heat fluxes have been accompanied by increased upper-346 

ocean current speeds |U| and the vertical shear in the horizontal velocities |Uz| over the period 347 

2015–2018 (Polyakov et al. 2020b). Using mooring observations from 2003 to 2018, these 348 

authors showed that |U| and |Uz| in the upper 60 m of the water column increased by about 20% 349 

and 40%, respectively. In the lower halocline (110-140 m), |U| was generally larger after 2008, 350 

increasing on average from 2.5-3.5 cm/s in 2003–2008 to about 4-5 cm/s in 2009–2018 (Fig. 351 

5c,d) although the change was not as strong in very recent years, 2016 and 2018 when compared 352 

to 2009–2015. There is also clear transition in |Uz|, with significantly larger shears evident post-353 

2010, and in particular in the summer of 2018 (Fig. 5c,d). However, Pnyushkov et al. (2018) 354 

found no significant change in the mean along-slope water transport over the same period.  355 

Accepted for publication in Journal of Climate. DOI 10.1175/JCLI-D-19-0976.1.

D
ow

nloaded from
 http://journals.am

etsoc.org/jcli/article-pdf/doi/10.1175/JC
LI-D

-19-0976.1/4983983/jclid190976.pdf by guest on 13 August 2020



 

 16 

     The combination of reduced stratification and increased shear implies a decreases the gradient 356 

Richardson number, Ri, defined in section 3 (Fig. 5e,f), consistent with an increased turbulent 357 

heat flux, associated with vertical mixing by shear instabilities. Although the Ri estimates are 358 

based on 20m vertical resolution measurements, they show a clear trend towards reduced 359 

dynamic stability which may be interpreted as a tendency towards increased turbulent mixing in 360 

recent years, coincident with the increase in maximum halocline heat content (Fig. 6). This 361 

tendency is particularly strong in 2018 with amplified velocity shear in the relatively weakly 362 

stratified upper ocean (Fig. 5).  363 

      The increased shear and weakening of stratification as prerequisites for enhanced turbulent 364 

mixing are consistent with the recent transition in the upper ocean to conditions previously 365 

unique to the western Nansen Basin, a process called ‘atlantification’ (Polyakov et al. 2017).  366 

Our analyses confirm that, in part, the loss of stratification in the eastern EB halocline can be 367 

attributed to processes originating upstream. For example, the change in halocline salinity, the 368 

main contributor to water column stability in the eastern EB, is correlated with upper ocean 369 

salinity changes in the northern Barents Sea with a lag of approximately 2 years (Fig. 10) (Lind 370 

et al. 2018), revealing coherent interannual variability between the two regions. In the Barents 371 

Sea, these changes were found to be closely linked to declines in sea ice imports to the Barents 372 

Sea (Lind et al., 2018; Barton et al., 2018). The shift towards higher salinities in the eastern EB 373 

lag the changes in the northern Barents Sea by about 1 year (Fig. 10), implying an eastward 374 

lateral progression of the ‘atlantification’. Shelf-basin interactions may also be contributing to 375 

the observed warming (e.g. Timmermans et al., 2018). 376 

      Our observations point to the shift of this region of the eastern Arctic Ocean towards a new 377 

regime that is more typical of the continental slope regions of the western Nansen Basin where 378 
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surface conditions are strongly influenced by oceanic heat imported from the Atlantic Ocean 379 

(Fig. 11).  The flux of AW heat to the sea ice cover and the atmosphere has increased, during the 380 

winter season, from an average of 3-4 W/m2 in 2007-2008 to >10 W/m2 in 2016-2018, 381 

equivalent to more than a two-fold reduction of winter ice growth over the last decade. 382 

     The process described here represents a positive feedback, analogous to the ice-albedo 383 

feedback, since increased ocean heat flux to the sea surface reduces ice thickness and increases 384 

its mobility, increasing atmospheric momentum flux into the ocean and reducing the damping of 385 

surface-intensified baroclinic tides (Carr et al., 2019). We refer to this process as the “ice/ocean-386 

heat” feedback.  As with the ice-albedo feedback, the contribution of the ice/ocean-heat feedback 387 

to long-term sea ice trends depends on the seasonal variability of several factors that affect 388 

mixing rates including sea ice concentration and thickness, baroclinic tidal response to 389 

seasonally varying stratification, and wind stress impacts on sea ice and on AW shoaling. The 390 

transition in dominant mixing regime from double diffusion to shear-driven mixing also affects 391 

the relative magnitudes of buoyancy fluxes due to heat and salinity transports; the vertical 392 

diffusivities for heat and salt are the same in shear-driven turbulence, but are different for double 393 

diffusion (Kelley, 1984).  Coincident vertical nutrient fluxes, which support oceanic primary 394 

productivity, food web structure and carbon export from the atmosphere to the seabed (Bluhm et 395 

al. 2015; Falk-Peterson et al. 2015), will also increase. Moreover, the nutricline has shoaled in 396 

recent years (relieving nutrient limitations, Fig. 1d) which coupled with declining sea ice cover 397 

(relieving light limitations), both influenced by atlantificiation, and so could lead to regional-398 

scale enhancement of biological productivity in the central Arctic Ocean. 399 

     As ice thins – through atmospheric forcing, changing ocean heat fluxes, and feedbacks – 400 

upper-ocean stratification is responding and a new Arctic state is emerging which may not be 401 
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easily reversed. For example, a large anomaly in AW heat input coupled with shoaling may lead, 402 

through the ice/ocean-heat feedback, to an expanding and more permanent Atlantic-dominated 403 

state wherein the hydrographic structure of the halocline no longer provides sufficient insulation 404 

between the intermediate depth AW and the sea ice, even when the heat flux associated with the 405 

AW is relaxed. This potential for a permanent transition of the eastern Arctic to a new state, 406 

emphases the pressing need for the incorporation of improved mixing schemes into Arctic 407 

climate models in order that they better simulate the evolving halocline stratification and its 408 

impact on sea ice state. 409 

Appendix A1. Building Long-Term Time Series 410 

Changes in the 110-140 m (halocline) layer at the M14 mooring site shown in Fig. 5 were 411 

documented using MMP records for 2003-2007 and 2013-2018, SBE37 records from M1g 412 

mooring in 2008–2010, and ADCP records for 2008-2010. This layer is the key part of the lower 413 

halocline water (Fig. 1a,b) and has sufficient data coverage for the task. All original mooring 414 

data were processed to make them comparable. We filtered MMP vertical profiles with a 415 

running-mean filter to reduce resolution to 4 m, equivalent to the 2013-2018 ADCP 416 

observations. We subsampled ADCP and SBE37 data in time to match coarser MMP temporal 417 

resolution. The vertical shear is calculated consistently using gradients over 20 m vertical scale. 418 

Reconstruction of the record at the M14 mooring site in 2013-2018 using MMP data from nearby 419 

moorings is described below. 420 

     There were no MMP measurements within the 110-140m depth range at the M14 mooring in 421 

2013-2015 and 2015-2018 (Table 1). Records for these years and depth range were 422 

reconstructed using weighted interpolated estimates from the neighboring M13 and M15 423 

moorings.  424 
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     This approach is justified by the observed monotonic cross-slope change of current speed 425 

from M13, M14, and M15 mooring records for the depth ranges where overlapping data is 426 

available for the three moorings (Fig. A1). Estimates of buoyancy frequency N derived from 427 

temperature and salinity provided by these three moorings are statistically indistinguishable (Fig. 428 

A1). 429 

     Multiple regression is used to further validate the use of records from moorings M13 and M15 430 

to reconstruct time series of temperature, salinity, and current speed at mooring M14 for 2013-431 

2018. The model of multiple regression is 432 

                                           𝑌 = 𝛽𝑜 + 𝛽1𝑋1 + 𝛽2𝑋2 ,                                                      (1) 433 

where 𝛽1 =
𝑟𝑌𝑋1−𝑟𝑌𝑋2𝑟𝑋1𝑋2

1−𝑟𝑋1𝑋2
2

𝜎𝑌

𝜎𝑋1
  ,        𝛽2 =

𝑟𝑌𝑋2−𝑟𝑌𝑋1𝑟𝑋1𝑋2

1−𝑟𝑋1𝑋2
2

𝜎𝑌

𝜎𝑋2
  ,  and  𝛽𝑜 = 𝑌 − 𝛽1𝑋1 + 𝛽2𝑋2, 434 

overbar denotes means, 𝜎 denotes standard deviations, r is used to denote cross-correlation 435 

coefficients, and random error term is neglected. For independent parameters X1 and X2 time 436 

series from M13 and M15 moorings are used, time series from M14 is used as the dependent 437 

variable Y. We neglected the high-frequency part of the records by applying low-pass three-438 

month running mean filtering to each time series used in the tests because in this study we 439 

mainly focus on longer-term (interannual) trends and changes. Evidence for the validity of this 440 

approach is provided in Fig. A2.  441 
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Figure legends 587 

Figure 1: Vertical profiles of (a) potential temperature θ, (b) salinity S, (c) the logarithm of squared 588 

Brunt-Väisälä frequency (N2, s-2, a measure of water column stability; 5-point smoothing is applied) 589 

and (d) nutrients at M14 mooring site made on August 27, 2013, September 20, 2015, and 590 

September 2, 2018. Circulation of the intermediate Atlantic Water (AW) in the Arctic Ocean is 591 

shown schematically in (e) by red arrows. In (a), the upper part of halocline is cold halocline layer 592 

(CHL) in which salinity increases with depth while temperature remains near the freezing point. 593 

The blue box indicates the area of the Arctic Ocean with mooring positions shown in Fig. 2. The 594 

Canada Basin (CB), Chukchi Sea (CS), East Siberian Sea (ESS), and Barents Sea (BS) are 595 

indicated. 596 

Figure 2: Map showing the focus of the study together with the positions of moorings and location 597 

of CTD (Conductivity-Temperature-Depth) profiles made in summer 2013, 2015, and 2018 598 

reported in this study. The Gakkel Ridge (GR) divides the Eurasian Basin (EB) into the Nansen 599 

Basin and the Amundsen Basin. The Lomonosov Ridge (LR), Novosibirskiye Islands (NI), 600 

Severnaya Zemlya (SZ), Franz Joseph Land (FJL), and Makarov Basin (MB) are indicated. Grey 601 

solid lines show depth in meters. The eastern EB region used for calculation of blue time series in 602 

Fig. 10 is identified by green line.  603 

Figure 3: Composite 2002 –2018 time series of (a) monthly mean potential water temperature (θ) 604 

and (c) daily depth of the lower halocline boundary (Hbase) defined by 0oC isotherm at M14 mooring 605 

location (for location, see Fig. 2). (b) Comparison of de-seasoned monthly mean time series of 606 

normalized θ anomalies from 250m of M14 mooring of the eastern EB (EEB) and lagged by 678 607 

days (as obtained from correlation analysis) F2-F3 moorings of Fram Strait; time series are 608 

normalized by their standard deviations.  609 

Figure 4: Depth–time diagram of potential temperature θ (oC) from M13 mooring. Black lines 610 

show the depth of the halocline base and lower Atlantic Water boundary both defined by 0oC 611 

isotherms.  612 

Figure 5: Estimates of (left) annual and (right) summer mean (a,b) squared buoyancy frequency 613 

N2 (105 s-2), (c,d) current magnitude |U| and squared vertical shear of horizontal currents |Uz|
2, 614 

and (e,f) proxy of Richardson number Ri for the 110-140 m depth range for the M14 mooring 615 

location. Statistical significance of means is shown at the 95% confidence level. 616 
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Figure 6: (Left and middle) 65-140m layer depth versus time of water temperature and annual 617 

component of heat content Q. Annual components are obtained via band-pass filtering using 618 

wavelet transformations. Horizontal black segments identify the depth of seasonal ventilation; 619 

dates identified by their ends are used to compute vertically integrated Q shown in the lower parts 620 

of panels in the right column. (Right) Vertically integrated Q for the beginning (warm phase) and 621 

end (cold phase) of seasonal ventilation (lower parts of the panels) and divergent heat fluxes Fh 622 

(upper parts) for four moorings. 623 

Figure 7: Time-averaged over M3, M12, M13, and M14 mooring records (top) vertically 624 

integrated Q for the beginning (warm phase, red bars, Qmax) and end (cold phase, blue bars, Qmin) 625 

of seasonal ventilation of eastern EB halocline (110-140m), (middle) divergent heat fluxes Fh 626 

(blue bars for averages with ±1 standard error shown as black segments), and (bottom) equivalent 627 

sea ice thickness losses.  628 

Figure 8: (a) Potential temperature, (b) annual component of heat content Q obtained by band-629 

pass filtering of daily heat content using wavelet spectra; horizontal black segments identify the 630 

depth of seasonal ventilation, (c) salinity, and (d) squared buoyancy frequency for M13 mooring. 631 

Figure 9: (left) Depth versus time diagram of potential water temperature θ (oC) and (right) time 632 

series of monthly heat content Q for the 65-140m layer (blue) and AW core temperature (red) for 633 

four moorings. Low correlations between these time series RQ-θ suggest that changes of Q are not 634 

related to seasonal shift of AW core relative to the slope. 635 

Figure 10: Normalized (reduced to anomalies and divided by one standard deviation SD) annual 636 

time series of (blue) halocline salinity S in the eastern EB (EEB, from Polyakov et al. 2018) and 637 

(red) lagged by one year (as obtained from correlation analysis) upper ocean S from the northern 638 

Barents Sea (from Lind et al. 2018). Dash-dotted lines are used to fill gaps (interpolated values 639 

are not used for statistical estimates). Means and SDs are indicated. Trends are shown by dashed 640 

lines; all trends are statistically significant at the 95% confidence according to the Student t test. 641 

The break-point in 1999 separates periods with opposite trends. 642 

Figure 11: Conceptual model of shift of the mixing regime in the eastern EB in recent years and 643 

associated suite of processes and state conditions including: 1) thinner, more mobile ice, 2) 644 

warmer surface mixed layer (SML), 3) weakening / retreat of cold halocline (HC) layer, 4) 645 

increased AW vertical heat flux (red arrows) and horizontal currents and their vertical shear 646 
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(blue arrows), 5) shoaling of upper AW boundary, and 6) replacement of DD by shear 647 

instabilities as the fundamental mechanism of vertical flux. 648 

Figure A1: 2013/15 mean estimates of (top) squared Brunt-Väisälä frequency N2, and current 649 

speed |U| for (middle) 20-60 m and (bottom) 190-230 m depth ranges where the mooring records 650 

from M13, M14, and M15 overlap. Statistical significance of estimates for means is shown at the 651 

95% confidence level. 652 

Figure A2: Multiple regression reconstruction of (a,b) salinity and (c,d) current speed |U| at M14 653 

mooring site using data from M13 and M15 moorings for 170-210m depth range. (a,c) Daily 654 

(dotted) and three-month running mean smoothed time series of (a) salinity and (c) |U| from M13, 655 

M14, and M15 moorings. (b,d) Original (blue) and reconstructed (red) time series of (b) salinity 656 

and (d) |U| from M14 mooring. Relatively high correlations between the original and 657 

reconstructed time series attests of good quality of reconstruction. 658 

 659 
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  674 

 675 

Figure 1: Vertical profiles of (a) potential temperature θ, (b) salinity S, (c) the logarithm of squared 676 

Brunt-Väisälä frequency (N2, s-2, a measure of water column stability; 5-point smoothing is applied) 677 

and (d) nutrients at M14 mooring site made on August 27, 2013, September 20, 2015, and 678 

September 2, 2018. Circulation of the intermediate Atlantic Water (AW) in the Arctic Ocean is 679 

shown schematically in (e) by red arrows. In (a), the upper part of halocline is cold halocline layer 680 

(CHL) in which salinity increases with depth while temperature remains near the freezing point. 681 

The blue box indicates the area of the Arctic Ocean with mooring positions shown in Fig. 2. The 682 

Canada Basin (CB), Chukchi Sea (CS), East Siberian Sea (ESS), and Barents Sea (BS) are 683 

indicated. 684 

 685 
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 687 

Figure 2: Map showing the focus of the study together with the positions of moorings and location 688 

of CTD (Conductivity-Temperature-Depth) profiles made in summer 2013, 2015, and 2018 689 

reported in this study. The Gakkel Ridge (GR) divides the Eurasian Basin (EB) into the Nansen 690 

Basin and the Amundsen Basin. The Lomonosov Ridge (LR), Novosibirskiye Islands (NI), 691 

Severnaya Zemlya (SZ), Franz Joseph Land (FJL), and Makarov Basin (MB) are indicated. Grey 692 

solid lines show depth in meters. The eastern EB region used for calculation of blue time series in 693 

Fig. 10 is identified by green line.  694 

 695 

 696 
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  697 

Figure 3: Composite 2002 –2018 time series of (a) monthly mean potential water temperature (θ) 698 

and (c) daily depth of the lower halocline boundary (Hbase) defined by 0oC isotherm at M14 mooring 699 

location (for location, see Fig. 2). (b) Comparison of de-seasoned monthly mean time series of 700 

normalized θ anomalies from 250m of M14 mooring of the eastern EB (EEB) and lagged by 678 701 

days (as obtained from correlation analysis) F2-F3 moorings of Fram Strait; time series are 702 

normalized by their standard deviations.  703 
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  704 

Figure 4: Depth–time diagram of potential temperature θ (oC) from M13 mooring. Black lines 705 

show the depth of the halocline base and lower Atlantic Water boundary both defined by 0oC 706 

isotherms.  707 

 708 
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 709 

Figure 5: Estimates of (left) annual and (right) summer mean (a,b) squared buoyancy frequency 710 

N2 (105 s-2), (c,d) current magnitude |U| and squared vertical shear of horizontal currents |Uz|
2, 711 

and (e,f) proxy of Richardson number Ri for the 110-140 m depth range for the M14 mooring 712 

location. Statistical significance of means is shown at the 95% confidence level. 713 

 714 
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 715 

 716 

Figure 6: (Left and middle) 65-140m layer depth versus time of water temperature and annual 717 

component of heat content Q. Annual components are obtained via band-pass filtering using 718 

wavelet transformations. Horizontal black segments identify the depth of seasonal ventilation; 719 

dates identified by their ends are used to compute vertically integrated Q shown in the lower parts 720 

of panels in the right column. (Right) Vertically integrated Q for the beginning (warm phase) and 721 

end (cold phase) of seasonal ventilation (lower parts of the panels) and divergent heat fluxes Fh 722 

(upper parts) for four moorings. 723 

 724 
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 725 
 726 

Figure 7: Time-averaged over M3, M12, M13, and M14 mooring records (top) vertically 727 

integrated Q for the beginning (warm phase, red bars, Qmax) and end (cold phase, blue bars, Qmin) 728 

of seasonal ventilation of eastern EB halocline (110-140m), (middle) divergent heat fluxes Fh 729 

(blue bars for averages with ±1 standard error shown as black segments), and (bottom) equivalent 730 

sea ice thickness losses.  731 
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  732 

Figure 8: (a) Potential temperature, (b) annual component of heat content Q obtained by band-733 

pass filtering of daily heat content using wavelet spectra; horizontal black segments identify the 734 

depth of seasonal ventilation, (c) salinity, and (d) squared buoyancy frequency for M13 mooring. 735 
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 736 

Figure 9: (left) Depth versus time diagram of potential water temperature θ (oC) and (right) time 737 

series of monthly heat content Q for the 65-140m layer (blue) and AW core temperature (red) for 738 

four moorings. Low correlations between these time series RQ-θ suggest that changes of Q are not 739 

related to seasonal shift of AW core relative to the slope. 740 

 741 

 742 

 743 

 744 
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 745 

Figure 10: Normalized (reduced to anomalies and divided by one standard deviation SD) annual 746 

time series of (blue) halocline salinity S in the eastern EB (EEB, from Polyakov et al. 2018) and 747 

(red) lagged by one year (as obtained from correlation analysis) upper ocean S from the northern 748 

Barents Sea (from Lind et al. 2018). Dash-dotted lines are used to fill gaps (interpolated values 749 

are not used for statistical estimates). Means and SDs are indicated. Trends are shown by dashed 750 

lines; all trends are statistically significant at the 95% confidence according to the Student t test. 751 

The break-point in 1999 separates periods with opposite trends. 752 

 753 
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 754 

Figure 11: Conceptual model of shift of the mixing regime in the eastern EB in recent years and 755 

associated suite of processes and state conditions including: 1) thinner, more mobile ice, 2) 756 

warmer surface mixed layer (SML), 3) weakening / retreat of cold halocline (HC) layer, 4) 757 

increased AW vertical heat flux (red arrows) and horizontal currents and their vertical shear 758 

(blue arrows), 5) shoaling of upper AW boundary, and 6) replacement of DD by shear 759 

instabilities as the fundamental mechanism of vertical flux. 760 
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 761 

Figure A1: 2013/15 mean estimates of (top) squared Brunt-Väisälä frequency N2, and current 762 

speed |U| for (middle) 20-60 m and (bottom) 190-230 m depth ranges where the mooring records 763 

from M13, M14, and M15 overlap. Statistical significance of estimates for means is shown at the 764 

95% confidence level. 765 
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 766 

Figure A2: Multiple regression reconstruction of (a,b) salinity and (c,d) current speed |U| at M14 767 

mooring site using data from M13 and M15 moorings for 170-210m depth range. (a,c) Daily 768 

(dotted) and three-month running mean smoothed time series of (a) salinity and (c) |U| from M13, 769 

M14, and M15 moorings. (b,d) Original (blue) and reconstructed (red) time series of (b) salinity 770 

and (d) |U| from M14 mooring. Relatively high correlations between the original and 771 

reconstructed time series attests of good quality of reconstruction. 772 
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Table 1: Summary of deep-water moorings used in this study (only those instruments are shown 774 

which records have been used here). For mooring locations, see Fig. 2.   775 

Mooring 

Latitude (N) 

Longitute 

(E) 

Depth 

(m) 
Instrument Depth range (m) 

Beginning 

of record 

End of 

record 

Moorings deployed in 2002/09 and collocated with M14 mooring 

M1a 
  78 27.360 

125 40.440 
2680 

MMP 

SBE37 

164 –2598 

57, 136 
09/02/2002 09/01/2003 

M1b 
  78 26.637 

125 40.194 
2686 MMP 104 –1484 09/08/2003 09/09/2004 

M1c 
  78 26.637 

125 40.194 
2690 

ADCP 

MMP 

5 – 50 

72 – 900 

09/14/2004 

09/15/2004 

09/15/2005 

07/16/2005 

M1e 
  78 25.940 

125 43.419 
2692 

ADCP 

MMP 

5 – 57 

70 – 900 
09/02/2006 

09/18/2007 

10/11/2006 

M1g 
  78 25.735 

125 28.527 
2765 

ADCP 

SBE37 

  

20 – 130 

110, 116, 132, 

339 

10/18/2008 

10/19/2008 

 

06/16/2010 

09/22/2011 

 

Mooring section M11 – M16, 2013/15 

M11 
  77 04.252 

125 48.288 
250 ADCP 20 – 250 08/26/2013 09/10/2015 

M12 
  77 10.376 

125 47.516 
787 

ADCP 

MMP 

5 – 63 

70 – 754 

10/27/2013 

08/26/2013 

09/01/2015 

08/31/2015 

M13 
  77 39.286 

125 48.401 
1849 

ADCP 

MMP 

5 – 56 

64 – 750 

09/06/2013 

09/07/2013 

09/02/2015 

09/03/2015 

M14 
  78 27.543 

125 53.758 
2721 

ADCP 

ADCP 

SBE37 

 

5 – 55 

193 – 463 

62, 129, 214, 

265, 617 

 

09/05/2013 

 

 

09/19/2015 

 

M15 
  80 00.199 

125 59.673 
3443 

ADCP 

MMP 

23 – 83 

88 – 754 

 

08/28/2013 

 

06/16/2014 

08/21/2015 

M16 
  81 08.182 

125 42.673 
3900 

ADCP 

MMP 

5 – 55 

60 – 754 
08/29/2013 

09/04/2015 

08/22/2015 

Mooring section M11 – M15, 2015/18 

M11 
  77 04.221 

125 49.577 
252 ADCP 200 – 232 09/21/2015 09/03/2018 

M12 
  77 10.373 

125 47.974 
783 

ADCP 

SBE 

 

5 – 60 

31, 44, 67, 138, 

213, 266, 628 

09/21/2015 09/03/2018 

M13 
  77 39.234 

125 48.686 
1866 

ADCP 

MMP 

5 – 55 

70 – 1056 

09/21/2015 

09/22/2015 

09/03/2018 

06/15/2017 

M14 
  78 28.084 

125 57.679 
2700 

ADCP 

ADCP 

SBE37 

 

5 – 30 

155 – 430 

38, 107, 188, 

240, 604 

09/21/2015 

 

09/18/2018 

 

M15 
  79 56.194 

126 01.228 
3443 

ADCP 

MMP 

5 – 61 

172 – 806 

09/21/2015 

09/24/2015 

08/31/2018 

08/29/2018 
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Mooring M14 – short (September 2 –20, 2018) 

M14-short 
  78 30.833 

125 58.924 
2700 MMP   30 – 194 09/02/2018 09/20/2018 

Moorings M3 

M3e 
  79 56.136 

142 14.887 
1335 

ADCP 

SBE 

 

5 – 61 

41, 45, 57, 64, 

130, 270 600 

08/31/2013 09/07/2015 

M3f 
  79 56.194 

142 15.216 
1357 

ADCP 

SBE 

 

5 – 44 

30, 50, 133, 217, 

268, 614 

09/07/2015 09/06/2018 

 776 

 777 
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