110 research outputs found

    Power changes of EEG signals associated with muscle fatigue: The root mean square analysis of EEG bands

    Get PDF
    The paper reports a research conducted to determine changes in the electrical activity of the contralateral motor cortex of the brain that drives the maximum voluntary contraction (MVC) of the right adductor pollicis muscle (APM) after fatigue. The power changes of EEG signals after muscle fatigue were computed. In twenty-five subjects, EEG signals from the left motor cortical area (C3, FC3) were recorded simultaneously with EMG signals from the right APM, before and after exercise-induced fatigue. The root mean square (RMS) of the EEG bands (alpha, beta, and gamma) was calculated to determine the power changes of the EEG signals after right APM fatigue. The mean RMS of the EEG bands were increased during MVC of the fatigued right APM compared to the RMS value during relaxation before fatigue (p<0.05). The RMS value was seen to be greatest in the beta band, and lowest in the gamma band. The observed increase in the RMS of EEG bands during MVC of the fatigued right APM suggest an increase in the EEG signal power, which could reflect an increase in energy needed by the motor cortex to perform MVC in fatigued muscles, which might give an indication of neural fatigue in the motor cortex

    Strategies to identify muscle fatigue from SEMG during cycling

    Get PDF
    Detection, quantification and analysis of muscle fatigue are crucial in occupational/rehabilitation and sporting settings. Sports organizations, such as the Australian Institute of Sports (AIS), currently monitor fatigue by a battery of tests including invasive techniques that require taking blood samples and/or muscle biopsies, the latter of which is highly invasive, painful, time consuming and expensive. SEMG (surface electromyography) is non-invasive monitoring of muscle activation and is an indication of localized muscle fatigue based on the observed shift of the power spectral density of the SEMG. The success of SEMG based techniques is currently limited to isometric contraction and is not acceptable to the human movement community. The paper proposes and tests a simple signal processing technique to identify the onset of muscle fatigue during cyclic activities of muscles, such as VL and VM, during cycling. Based on experiments conducted with 7 participants, using power output as a measure of fatigue, the technique is able to identify muscle fatigue with 98% significance

    Making sense of complexity in context and implementation: the Context and Implementation of Complex Interventions (CICI) framework.

    Get PDF
    BACKGROUND: The effectiveness of complex interventions, as well as their success in reaching relevant populations, is critically influenced by their implementation in a given context. Current conceptual frameworks often fail to address context and implementation in an integrated way and, where addressed, they tend to focus on organisational context and are mostly concerned with specific health fields. Our objective was to develop a framework to facilitate the structured and comprehensive conceptualisation and assessment of context and implementation of complex interventions. METHODS: The Context and Implementation of Complex Interventions (CICI) framework was developed in an iterative manner and underwent extensive application. An initial framework based on a scoping review was tested in rapid assessments, revealing inconsistencies with respect to the underlying concepts. Thus, pragmatic utility concept analysis was undertaken to advance the concepts of context and implementation. Based on these findings, the framework was revised and applied in several systematic reviews, one health technology assessment (HTA) and one applicability assessment of very different complex interventions. Lessons learnt from these applications and from peer review were incorporated, resulting in the CICI framework. RESULTS: The CICI framework comprises three dimensions-context, implementation and setting-which interact with one another and with the intervention dimension. Context comprises seven domains (i.e., geographical, epidemiological, socio-cultural, socio-economic, ethical, legal, political); implementation consists of five domains (i.e., implementation theory, process, strategies, agents and outcomes); setting refers to the specific physical location, in which the intervention is put into practise. The intervention and the way it is implemented in a given setting and context can occur on a micro, meso and macro level. Tools to operationalise the framework comprise a checklist, data extraction tools for qualitative and quantitative reviews and a consultation guide for applicability assessments. CONCLUSIONS: The CICI framework addresses and graphically presents context, implementation and setting in an integrated way. It aims at simplifying and structuring complexity in order to advance our understanding of whether and how interventions work. The framework can be applied in systematic reviews and HTA as well as primary research and facilitate communication among teams of researchers and with various stakeholders

    The Fundamental Diagram of Pedestrian Movement Revisited

    Full text link
    The empirical relation between density and velocity of pedestrian movement is not completely analyzed, particularly with regard to the `microscopic' causes which determine the relation at medium and high densities. The simplest system for the investigation of this dependency is the normal movement of pedestrians along a line (single-file movement). This article presents experimental results for this system under laboratory conditions and discusses the following observations: The data show a linear relation between the velocity and the inverse of the density, which can be regarded as the required length of one pedestrian to move. Furthermore we compare the results for the single-file movement with literature data for the movement in a plane. This comparison shows an unexpected conformance between the fundamental diagrams, indicating that lateral interference has negligible influence on the velocity-density relation at the density domain 1m2<ρ<5m21 m^{-2}<\rho<5 m^{-2}. In addition we test a procedure for automatic recording of pedestrian flow characteristics. We present preliminary results on measurement range and accuracy of this method.Comment: 13 pages, 9 figure

    Effects of body position on autonomic regulation of cardiovascular function in young, healthy adults

    Get PDF
    Background: Analysis of rhythmic patterns embedded within beat-to-beat variations in heart rate (heart rate variability) is a tool used to assess the balance of cardiac autonomic nervous activity and may be predictive for prognosis of some medical conditions, such as myocardial infarction. It has also been used to evaluate the impact of manipulative therapeutics and body position on autonomic regulation of the cardiovascular system. However, few have compared cardiac autonomic activity in supine and prone positions, postures commonly assumed by patients in manual therapy. We intend to redress this deficiency. Methods: Heart rate, heart rate variability, and beat-to-beat blood pressure were measured in young, healthy non-smokers, during prone, supine, and sitting postures and with breathing paced at 0.25 Hz. Data were recorded for 5 minutes in each posture: Day 1 - prone and supine; Day 2 - prone and sitting. Paired t-tests or Wilcoxon signed-rank tests were used to evaluate posture-related differences in blood pressure, heart rate, and heart rate variability. Results: Prone versus supine: blood pressure and heart rate were significantly higher in the prone posture (p &lt; 0.001). Prone versus sitting: blood pressure was higher and heart rate was lower in the prone posture (p &lt; 0.05) and significant differences were found in some components of heart rate variability. Conclusion: Cardiac autonomic activity was not measurably different in prone and supine postures, but heart rate and blood pressure were. Although heart rate variability parameters indicated sympathetic dominance during sitting (supporting work of others), blood pressure was higher in the prone posture. These differences should be considered when autonomic regulation of cardiovascular function is studied in different postures

    Tannin- caprolactam and Tannin- PEG formulations as outdoor wood preservatives: Weathering properties

    Get PDF
    International audienceAbstractKey messageThis article presents the leaching, fire and weathering resistance improvements of samples treated with tannin-based wood preservatives added of caprolactam. PEG-added formulations show limited applicability. The FT-IR and13C-NMR analyses of the caprolactam-added formulations show some evidences of copolymerization.ContextTannin-boron wood preservatives are known for their high resistance against leaching, biological attacks, fire as well as for the good mechanical properties that they impart to wood. These properties promoted these formulations for being a candidate for the protection of green buildings. However, the low elasticity of these polymers and their dark colour implied limited weathering resistances.AimsThe aim of the study is to find suitable additives for tannin-based formulations to overcome their limited weathering resistances, without compromising the other properties.MethodsTreatment, leaching and fire tests, dimensional stability as well as artificial and natural weathering of the timber treated with caprolactam-added and PEG-added formulations were performed. FT-IR and 13C-NMR of the formulations were presented.ResultsThe presence of caprolactam improved the properties of the formulation with particularly significant results in terms of resistance against leaching and dimensional stability. These enhancements were imparted also to the weathering resistance of the tannin-caprolactam formulations. Indeed, the colour changes during the artificial and natural exposures were stable for longer periods. FT-IR and 13C-NMR investigations of the advanced formulations were led, and covalent copolymerization of the caprolactam with the tannin-hexamine polymer was observed.ConclusionThe tannin formulations with caprolactam improved the durability of the wood specimens, while the PEG-tannin presented strong application drawbacks

    Insect threats and conservation through the lens of global experts

    Get PDF
    While several recent studies have focused on global insect population trends, all are limited in either space or taxonomic scope. As global monitoring programs for insects are currently not implemented, inherent biases exist within most data. Expert opinion, which is often widely available, proves to be a valuable tool where hard data are limited. Our aim is to use global expert opinion to provide insights on the root causes of potential insect declines worldwide, as well as on effective conservation strategies that could mitigate insect biodiversity loss. We obtained 753 responses from 413 respondents with a wide variety of spatial and taxonomic expertise. The most relevant threats identified through the survey were agriculture and climate change, followed by pollution, while land management and land protection were recognized as the most significant conservation measures. Nevertheless, there were differences across regions and insect groups, reflecting the variability within the most diverse class of eukaryotic organisms on our planet. Lack of answers for certain biogeographic regions or taxa also reflects the need for research in less investigated settings. Our results provide a novel step toward understanding global threats and conservation measures for insects.Peer reviewe
    corecore