13 research outputs found

    Spotlight on varietal thiols and precursors in grapes and wines

    No full text
    Wine is an amazingly complex natural product that requires dedicated scientists to resolve many of its mysteries. Traditional synthetic organic chemistry and modern analytical techniques are powerful tools at the disposal of wine chemists who tackle the complexities of wine in order to improve scientific understanding and provide practical solutions to industry. Part of this quest for knowledge relates to maintaining or improving wine quality, which underpins consumer acceptance and links to the competitiveness of wineries in a global market. Wine aroma is an important aspect of wine quality and garners much attention from researchers. Grape-derived aroma compounds are one area of particular importance owing to their distinctiveness and ability to impart ‘varietal aromas’ to wines. Varietal thiols imparting tropical and citrus notes that are characteristic of wines such as Sauvignon Blanc have emerged, along with their grape-derived precursors, as an area of interest over the past two decades. These compounds have also caught our attention and we have made some important contributions to this field, including identifying new precursors, developing novel analytical methods, and conducting studies that provide unique insights into the biochemical transformations occurring in grape berries and juice, and during fermentation.David W. Jeffer

    The photolysis of ortho-nitrophenols: A new gas phase source of HONO

    Get PDF
    Formation of nitrous acid (HONO) in the gas phase has been observed for the first time in a flow tube photoreactor upon irradiation (λ = 300-500 nm) of 2-nitrophenol and methyl substituted derivatives using a selective and sensitive instrument (LOPAP) for the detection of HONO. Formation of HONO by heterogeneous NO2photochemistry has been excluded, since production of NO2under the experimental conditions is negligible. Variation of the surface to volume ratio and the nitrophenol concentration showed that the photolysis occurred in the gas phase indicating that HONO formation is initiated by intramolecular hydrogen transfer from the phenolic OH group to the nitro group. From the measured linear dependence of the HONO formation rate on the reactant\u27s concentration and photolysis light intensity, a non-negligible new HONO source is proposed for the urban atmosphere during the day. Unexpectedly high HONO mixing ratios have been observed recently in several field campaigns during the day. It is proposed that the photolysis of aromatic compounds containing the ortho-nitrophenol entity could help to explain, at least in part, this high contribution of HONO to the oxidation capacity of the urban atmosphere
    corecore