122 research outputs found

    Implosion-driven shock tube

    Get PDF
    Detonation wave striking PETN explosive shell producing implosion or implosion wave in shock tub

    Thermochemistry of monazite-(La) and dissakisite-(La): implications for monazite and allanite stability in metapelites

    Get PDF
    Thermochemical properties have been either measured or estimated for synthetic monazite, LaPO4, and dissakisite, CaLaMgAl2(SiO4)3OH, the Mg-equivalent of allanite. A dissakisite formation enthalpy of −6,976.5±10.0kJmol−1 was derived from high-temperature drop-solution measurements in lead borate at 975K. A third-law entropy value of 104.9±1.6Jmol−1K−1 was retrieved from low-temperature heat capacity (C p) measured on synthetic LaPO4 with an adiabatic calorimeter in the 30-300K range. The C p values of lanthanum phases were measured in the 143-723K range by differential scanning calorimetry. In this study, La(OH)3 appeared as suitable for drop solution in lead borate and represents an attractive alternative to La2O3. Pseudo-sections were calculated with the THERIAK-DOMINO software using the thermochemical data retrieved here for a simplified metapelitic composition (La=∑REE+Y) and considering monazite and Fe-free epidotes along the dissakisite-clinozoïsite join, as the only REE-bearing minerals. Calculation shows a stability window for dissakisite-clinozoïsite epidotes (T between 250 and 550°C and P between 1 and 16kbar), included in a wide monazite field. The P-T extension of this stability window depends on the bulk-rock Ca-content. Assuming that synthetic LaPO4 and dissakisite-(La) are good analogues of natural monazite and allanite, these results are consistent with the REE-mineralogy sequence observed in metapelites, where (1) monazite is found to be stable below 250°C, (2) around 250-450°C, depending on the pressure, allanite forms at the expense of monazite and (3) towards amphibolite conditions, monazite reappears at the expense of allanit

    Metabolic constituents of grapevine and grape-derived products

    Get PDF
    The numerous uses of the grapevine fruit, especially for wine and beverages, have made it one of the most important plants worldwide. The phytochemistry of grapevine is rich in a wide range of compounds. Many of them are renowned for their numerous medicinal uses. The production of grapevine metabolites is highly conditioned by many factors like environment or pathogen attack. Some grapevine phytoalexins have gained a great deal of attention due to their antimicrobial activities, being also involved in the induction of resistance in grapevine against those pathogens. Meanwhile grapevine biotechnology is still evolving, thanks to the technological advance of modern science, and biotechnologists are making huge efforts to produce grapevine cultivars of desired characteristics. In this paper, important metabolites from grapevine and grape derived products like wine will be reviewed with their health promoting effects and their role against certain stress factors in grapevine physiology

    Novel Disease Susceptibility Factors for Fungal Necrotrophic Pathogens in Arabidopsis

    Get PDF
    Host cells use an intricate signaling system to respond to invasions by pathogenic microorganisms. Although several signaling components of disease resistance against necrotrophic fungal pathogens have been identified, our understanding for how molecular components and host processes contribute to plant disease susceptibility is rather sparse. Here, we identified four transcription factors (TFs) from Arabidopsis that limit pathogen spread. Arabidopsis mutants defective in any of these TFs displayed increased disease susceptibility to Botrytis cinerea and Plectosphaerella cucumerina, and a general activation of non-immune host processes that contribute to plant disease susceptibility. Transcriptome analyses revealed that the mutants share a common transcriptional signature of 77 up-regulated genes. We characterized several of the up-regulated genes that encode peptides with a secretion signal, which we named PROVIR (for provirulence) factors. Forward and reverse genetic analyses revealed that many of the PROVIRs are important for disease susceptibility of the host to fungal necrotrophs. The TFs and PROVIRs identified in our work thus represent novel genetic determinants for plant disease susceptibility to necrotrophic fungal pathogens.Funding: This work was supported by the Spanish MINECO (BFU2012 to PV), and Generalitat Valenciana (Prometeo2014/020 to PV). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Dobón Alonso, A.; Canet Perez, JV.; García-Andrade Serrano, J.; Angulo, C.; Neumetzler, L.; Persson, S.; Vera Vera, P. (2015). Novel Disease Susceptibility Factors for Fungal Necrotrophic Pathogens in Arabidopsis. PLoS Pathogens. 11(4):1-30. https://doi.org/10.1371/journal.ppat.1004800S13011

    TALISMAN Transnational Access to Key Nuclear Research Facilities in Europe

    No full text
    International audienceActinides studies require specific hot laboratories and characterization tools that are only available in a limited number of places worldwide. Actually, only a few academic and research organisations have the capabilities to work on these elements under safe conditions in Europe. To ensure a sustaining development of actinides sciences, it is therefore considered as a strategic issue to coordinate the existing actinide infrastructures available in Europe, and to strengthen the community of European scientists working on actinides.Since 2004, Europe supports the strengthening of the European actinides sciences scientific community through the funding of dedicated networks. In this continuation, TALISMAN (Transnational Access to Large Infrastructures for a Safe Management of ActiNides) gathers now the main European hot laboratories in actinides sciences in order to promote their opening to academics and universities and strengthen the EU-skills in actinides sciences. Furthermore, a specific focus is set on the development of advanced cutting edge experimental and spectroscopic capabilities, the combination of state-of-the art experimental with theoretical first-principle methods on a quantum mechanical level and to benefit from the synergy between the different scientific and technical communities The paper comes back on more than 10 years of successful collaboration in this field in Europe and present TALISMAN in more detail

    Comparaison des comportements chimiques du neptunium et du plutonium dans des eaux naturelles

    No full text
    National audienc

    Interactions between Nuclear Fuel and Water at the Fukushima Daiichi Reactors

    No full text
    Used nuclear fuel is a redox-sensitive semiconductor consisting of uranium dioxide containing a few percent of fission products and up to about one percent transuranium elements, mainly plutonium. The rapid increase in temperature in the cores of the Fukushima reactors was caused by the loss of coolant in the aftermath of the damage from the tsunami. Temperatures probably well above 2000 °C caused melting of not only the UO2 in the fuel but also the zircaloy cladding and steel, forming a quenched melt, termed corium. Substantial amounts of volatile fission products, such as Cs and I, were released during melting, but the less volatile fission products and the actinides (probably >99.9%) were incorporated into the corium as the melt cooled and was quenched. The corium still contains these radionuclides, which leads to a very large long-term radiotoxicity of the molten reactor core. The challenge for environmental scientists is to assess the long-term interactions between water and the mixture of corium and potentially still-existing unmelted fuel, particularly if the molten reactor core is left in place and covered with a sarcophagus for hundreds of years. Part of the answer to this question can be found in the knowledge that has been gained from research into the disposal of spent nuclear fuel in a geologic repository
    corecore