429 research outputs found

    Further Delineation of Duplications of ARX Locus Detected in Male Patients with Varying Degrees of Intellectual Disability

    Get PDF
    The X-linked gene encoding aristaless-related homeobox (ARX) is a bi-functional transcription factor capable of activating or repressing gene transcription, whose mutations have been found in a wide spectrum of neurodevelopmental disorders (NDDs); these include cortical malformations, pae-diatric epilepsy, intellectual disability (ID) and autism. In addition to point mutations, duplications of the ARX locus have been detected in male patients with ID. These rearrangements include telen-cephalon ultraconserved enhancers, whose structural alterations can interfere with the control of ARX expression in the developing brain. Here, we review the structural features of 15 gain copy-number variants (CNVs) of the ARX locus found in patients presenting wide-ranging phenotypic variations including ID, speech delay, hypotonia and psychiatric abnormalities. We also report on a further novel Xp21.3 duplication detected in a male patient with moderate ID and carrying a fully duplicated copy of the ARX locus and the ultraconserved enhancers. As consequences of this rearrangement, the patient-derived lymphoblastoid cell line shows abnormal activity of the ARX-KDM5C-SYN1 regulatory axis. Moreover, the three-dimensional (3D) structure of the Arx locus, both in mouse embryonic stem cells and cortical neurons, provides new insight for the functional consequences of ARX duplications. Finally, by comparing the clinical features of the 16 CNVs affecting the ARX locus, we conclude that—depending on the involvement of tissue-specific enhancers—the ARX duplications are ID-associated risk CNVs with variable expressivity and penetrance

    Extracellular Vesicle-Associated Transitory Cell Wall Components and Their Impact on the Interaction of Fungi with Host Cells

    Get PDF
    Submitted by Fabricia Pimenta ([email protected]) on 2018-06-29T18:34:23Z No. of bitstreams: 1 ve_Marcio_Rodrigues_etal_CDTS_2016.pdf: 690221 bytes, checksum: a96164d483123b78f71bffabda9ffa1b (MD5)Approved for entry into archive by Fabricia Pimenta ([email protected]) on 2019-01-11T18:29:02Z (GMT) No. of bitstreams: 1 ve_Marcio_Rodrigues_etal_CDTS_2016.pdf: 690221 bytes, checksum: a96164d483123b78f71bffabda9ffa1b (MD5)Made available in DSpace on 2019-01-11T18:29:02Z (GMT). No. of bitstreams: 1 ve_Marcio_Rodrigues_etal_CDTS_2016.pdf: 690221 bytes, checksum: a96164d483123b78f71bffabda9ffa1b (MD5) Previous issue date: 2016-07-08Universidade Federal do Rio de Janeiro. Instituto de Microbiologia Professor Paulo de Góes. Laboratório de Glicobiologia de Eucariotos. Rio de Janeiro, RJ, Brazil.Universidade Federal do Rio de Janeiro. Instituto de Microbiologia Professor Paulo de Góes. Laboratório de Glicobiologia de Eucariotos. Rio de Janeiro, RJ, Brazil.Stony Brook University. Department of Molecular Genetics and Microbiology. Stony Brook, NY, USA / Veterans Administration Medical Center. Northport, NY, USA.Albert Einstein College of Medicine. Department of Microbiology and Immunology and Medicine. Bronx, NY, USA.Universidade Federal do Rio de Janeiro. Instituto de Microbiologia Professor Paulo de Góes. Laboratório de Glicobiologia de Eucariotos. Rio de Janeiro, RJ, Brazil.Universidade Federal do Rio de Janeiro. Instituto de Microbiologia Professor Paulo de Góes. Laboratório de Glicobiologia de Eucariotos. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Centro de Desenvolvimento Tecnológico em Saúde. Rio de Janeiro, RJ, Brazil / Universidade Federal do Rio de Janeiro. Instituto de Microbiologia Professor Paulo de Góes. Laboratório de Glicobiologia de Eucariotos. Rio de Janeiro, RJ, Brazil.Classic cell wall components of fungi comprise the polysaccharides glucans and chitin, in association with glycoproteins and pigments. During the last decade, however, system biology approaches clearly demonstrated that the composition of fungal cell walls include atypical molecules historically associated with intracellular or membrane locations. Elucidation of mechanisms by which many fungal molecules are exported to the extracellular space suggested that these atypical components are transitorily located to the cell wall. The presence of extracellular vesicles (EVs) at the fungal cell wall and in culture supernatants of distinct pathogenic species suggested a highly functional mechanism of molecular export in these organisms. Thus, the passage of EVs through fungal cell walls suggests remarkable molecular diversity and, consequently, a potentially variable influence on the host antifungal response. On the basis of information derived from the proteomic characterization of fungal EVs from the yeasts Cryptoccocus neoformans and Candida albicans and the dimorphic fungi Histoplasma capsulatum and Paracoccidioides brasiliensis, our manuscript is focused on the clear view that the fungal cell wall is much more complex than previously thought

    Complete proteome of a quinolone-resistant Salmonella Typhimurium phage type DT104B clinical strain

    Get PDF
    Salmonellosis is one of the most common and widely distributed foodborne diseases. The emergence of Salmonella strains that are resistant to a variety of antimicrobials is a serious global public health concern. Salmonella enterica serovar Typhimurium definitive phage type 104 (DT104) is one of these emerging epidemic multidrug resistant strains. Here we collate information from the diverse and comprehensive range of experiments on Salmonella proteomes that have been published. We then present a new study of the proteome of the quinolone-resistant Se20 strain (phage type DT104B), recovered after ciprofloxacin treatment and compared it to the proteome of reference strain SL1344. A total of 186 and 219 protein spots were recovered from Se20 and SL1344 protein extracts, respectively, after two-dimensional gel electrophoresis. The signatures of 94% of the protein spots were successfully identified through matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS). Three antimicrobial resistance related proteins, whose genes were previously detected by polymerase chain reaction (PCR), were identified in the clinical strain. The presence of these proteins, dihydropteroate synthase type-2 (sul2 gene), aminoglycoside resistance protein A (strA gene) and aminoglycoside 6'-N-acetyltransferase type Ib-cr4 (aac(6')-Ib-cr4 gene), was confirmed in the DT104B clinical strain. The aac(6')-Ib-cr4 gene is responsible for plasmid-mediated aminoglycoside and quinolone resistance. This is a preliminary analysis of the proteome of these two S. Typhimurium strains and further work is being developed to better understand how antimicrobial resistance is developing in this pathogen

    HIF-1α is over-expressed in leukemic cells from TP53-disrupted patients and is a promising therapeutic target in chronic lymphocytic leukemia

    Get PDF
    In chronic lymphocytic leukemia (CLL), the hypoxia-inducible factor 1 (HIF-1) regulates the response of tumor cells to hypoxia and their protective interactions with the leukemic microenvironment. In this study, we demonstrate that CLL cells from TP53-disrupted (TP53dis) patients have constitutively higher expression levels of the α-subunit of HIF-1 (HIF-1α) and increased HIF-1 transcriptional activity compared to the wild-type counterpart. In the TP53dis subset, HIF-1α upregulation is due to reduced expression of the HIF-1α ubiquitin ligase von Hippel-Lindau protein (pVHL). Hypoxia and stromal cells further enhance HIF-1α accumulation, independently of TP53 status. Hypoxia acts through the downmodulation of pVHL and the activation of the PI3K/AKT and RAS/ERK1-2 pathways, whereas stromal cells induce an increased activity of the RAS/ERK1-2, RHOA/RHOA kinase and PI3K/AKT pathways, without affecting pVHL expression. Interestingly, we observed that higher levels of HIF-1A mRNA correlate with a lower susceptibility of leukemic cells to spontaneous apoptosis, and associate with the fludarabine resistance that mainly characterizes TP53dis tumor cells. The HIF-1α inhibitor BAY87-2243 exerts cytotoxic effects toward leukemic cells, regardless of the TP53 status, and has anti-tumor activity in Em-TCL1 mice. BAY87-2243 also overcomes the constitutive fludarabine resistance of TP53dis leukemic cells and elicits a strongly synergistic cytotoxic effect in combination with ibrutinib, thus providing preclinical evidence to stimulate further investigation into use as a potential new drug in CLL

    Clinical significance of bax/bcl-2 ratio in chronic lymphocytic leukemia

    Get PDF
    In chronic lymphocytic leukemia the balance between the pro-apoptotic and anti-apoptotic members of the bcl-2 family is involved in the pathogenesis, chemorefractoriness and clinical outcome. Moreover, the recently proposed anti-bcl-2 molecules, such as ABT-199, have emphasized the potential role of of bcl-2 family proteins in the context of target therapies. We investigated bax/bcl-2 ratio by flow cytometry in 502 patients and identified a cut off of 1.50 to correlate bax/bcl-2 ratio with well-established clinical and biological prognosticators. Bax/bcl-2 was 1.50 or over in 263 patients (52%) with chronic lymphocytic leukemia. Higher bax/bcl-2 was associated with low Rai stage, lymphocyte doubling time over 12 months, beta-2 microglobulin less than 2.2 mg/dL, soluble CD23 less than 70 U/mL and a low risk cytogenetic profile (P<0.0001). On the other hand, lower bax/bcl-2 was correlated with unmutated IGHV (P<0.0001), mutated NOTCH1 (P<0.0001) and mutated TP53 (P=0.00007). Significant shorter progression-free survival and overall survival were observed in patients with lower bax/bcl-2 (P<0.0001). Moreover, within IGHV unmutated (168 patients) and TP53 mutated (37 patients) subgroups, higher bax/bcl-2 identified cases with significant longer PFS (P=0.00002 and P=0.039). In multivariate analysis of progression-free survival and overall survival, bax/bcl-2 was an independent prognostic factor (P=0.0002 and P=0.002). In conclusion, we defined the prognostic power of bax/bcl-2 ratio, as determined by a flow cytometric approach, and highlighted a correlation with chemoresistance and outcome in chronic lymphocytic leukemia. Finally, the recently proposed new therapies employing bcl-2 inhibitors prompted the potential use of bax/bcl-2 ratio to identify patients putatively resistant to these molecules

    Toward optimization of postremission therapy for residual disease-positive patients with acute myeloid leukemia

    Get PDF
    Purpose:Despite the identification of several baseline prognostic indicators, the outcome of patients with acute myeloid leukemia (AML) is generally heterogeneous. The effects of autologous (AuSCT) or allogeneic stem-cell transplantation (SCT) are still under evaluation. Minimal residual disease (MRD) states may be essential for assigning patients to therapy-dependent risk categories. Patients and Methods: By multiparametric flow cytometry, we assessed the levels of MRD in 142 patients with AML who achieved complete remission after intensive chemotherapy. Results: A level of 3.5 x 10(-4) residual leukemia cells (RLCs) after consolidation therapy was established to identify MRD-negative and MRD-positive cases, with 5-year relapse-free survival (RFS) rates of 60% and 16%, respectively (P <.0001) and overall survival (OS) rates of 62% and 23%, respectively (P=.0001). Of patients (n = 77) who underwent a transplantation procedure (56 AuSCT and 21 SCT procedures); 42 patients (55%) were MRD positive (28 patients who underwent AuSCT and 14 patients who underwent SCT) and 35 patients (45%) were MRD negative (28 patients who underwent AuSCT and seven who underwent SCT). MRD-negative patients had a favorable prognosis, with only eight (22%) of 35 patients experiencing relapse, whereas 29 (69%) of 42 MRD-positive patients experienced relapse (P <.0001). In this high-risk group of 42 patients, we observed that 23 (82%) of 28 of those who underwent AuSCT experienced relapse, whereas six (43%) of 14 who underwent SCT experienced relapse (P=.014). Patients who underwent SCT also had a higher likelihood of RFS (47% v 14%). Conclusion A threshold of 3.5 x 10(-4) RLCs postconsolidation is critical for predicting disease outcome. MRD-negative patients have a good outcome regardless of the type of transplant they receive. In the MRD-positive group, AuSCT does not improve prognosis and SCT represents the primary option

    Rituximab in B-Cell Hematologic Malignancies: A Review of 20 Years of Clinical Experience

    Get PDF
    Rituximab is a human/murine, chimeric anti-CD20 monoclonal antibody with established efficacy, and a favorable and well-defined safety profile in patients with various CD20-expressing lymphoid malignancies, including indolent and aggressive forms of B-cell non-Hodgkin lymphoma. Since its first approval 20 years ago, intravenously administered rituximab has revolutionized the treatment of B-cell malignancies and has become a standard component of care for follicular lymphoma, diffuse large B-cell lymphoma, chronic lymphocytic leukemia, and mantle cell lymphoma. For all of these diseases, clinical trials have demonstrated that rituximab not only prolongs the time to disease progression but also extends overall survival. Efficacy benefits have also been shown in patients with marginal zone lymphoma and in more aggressive diseases such as Burkitt lymphoma. Although the proven clinical efficacy and success of rituximab has led to the development of other anti-CD20 monoclonal antibodies in recent years (e.g., obinutuzumab, ofatumumab, veltuzumab, and ocrelizumab), rituximab is likely to maintain a position within the therapeutic armamentarium because it is well established with a long history of successful clinical use. Furthermore, a subcutaneous formulation of the drug has been approved both in the EU and in the USA for the treatment of B-cell malignancies. Using the wealth of data published on rituximab during the last two decades, we review the preclinical development of rituximab and the clinical experience gained in the treatment of hematologic B-cell malignancies, with a focus on the well-established intravenous route of administration. This article is a companion paper to A. Davies, et al., which is also published in this issue
    corecore