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Classic cell wall components of fungi comprise the polysaccharides glucans and chitin,
in association with glycoproteins and pigments. During the last decade, however,
system biology approaches clearly demonstrated that the composition of fungal cell
walls include atypical molecules historically associated with intracellular or membrane
locations. Elucidation of mechanisms by which many fungal molecules are exported
to the extracellular space suggested that these atypical components are transitorily
located to the cell wall. The presence of extracellular vesicles (EVs) at the fungal cell
wall and in culture supernatants of distinct pathogenic species suggested a highly
functional mechanism of molecular export in these organisms. Thus, the passage of EVs
through fungal cell walls suggests remarkable molecular diversity and, consequently, a
potentially variable influence on the host antifungal response. On the basis of information
derived from the proteomic characterization of fungal EVs from the yeasts Cryptoccocus
neoformans and Candida albicans and the dimorphic fungi Histoplasma capsulatum and
Paracoccidioides brasiliensis, our manuscript is focused on the clear view that the fungal
cell wall is much more complex than previously thought.

Keywords: fungal cell wall, extracellular vesicles, proteomics, host cell, cell wall remodeling

INTRODUCTION

Glucans, chitin, and glycoproteins are cross-linked to form the most essential structure of fungal
cell walls (Free, 2013). This structure is responsible for cell shaping, as well as for osmotic and
physical protection of the cell (Nimrichter et al., 2005). However, fungal morphogenesis and
reproduction require elaborated cell wall remodeling. Therefore, the fungal cell wall must combine
contrasting properties such as elasticity and rigidity, which demands a remarkable dynamism. In
fact, different fungal species have distinct ways to assemble their cell wall (Erwig and Gow, 2016).
A plethora of enzymes reach precise regions at the fungal cell surface to finely control remodeling,
avoiding cellular damage (Fischer et al., 2008). The consequence of these rearrangements must
impact directly on the recognition of fungal pathogens by the host, since they imply a high diversity
in the molecular composition of the cell surface.
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Several reviews discuss the interaction of fungi with
host cells based on well-known surface components,
such as α and β-glucans, mannoproteins, galactomannan,
glucuronoxylomannan (GXM), and most recently chitin and its
derivatives (Romani et al., 2002; Romani, 2011; Vautier et al.,
2012; Paulovicova et al., 2014; Dambuza and Brown, 2015;
Levitz et al., 2015; Underhill and Pearlman, 2015). However,
atypical proteins originally characterized as cytoplasmic or
plasma membrane constituents have been also found at cell wall
(Alloush et al., 1997; Gil-Navarro et al., 1997; Gozalbo et al.,
1998; Pitarch et al., 2002; Kneipp et al., 2003; Motshwene et al.,
2003; Nimrichter et al., 2005; Barbosa et al., 2006; Batista et al.,
2006; Castillo et al., 2008; da Silva Neto et al., 2009; Tomazett
et al., 2010; Brito Wde et al., 2011; Karkowska-Kuleta et al.,
2011; Puccia et al., 2011; Marcos et al., 2012; Gil-Bona et al.,
2015b; Karkowska-Kuleta and Kozik, 2015). Most of these
proteins share a common characteristic: they are released from
the cell inside vesicular compartments that traverse the cell
wall and reach the extracellular environment. These molecular
carriers are called extracellular vesicles (EVs), which are part
of a conserved secretion mechanism shared by all domains
of life. EV composition, biogenesis, and immunobiological
functions were discussed in recent reviews (Rodrigues et al.,
2011, 2013, 2014, 2015; Oliveira et al., 2013; Brown et al., 2015)
but there remains a significant need for additional information
regarding the mechanisms through which EVs pass through
the cell wall and how they influence host recognition. In fact,
EVs from Cryptoccocus neoformans and Candida albicans are
recognized and internalized by phagocytes culminating in
host cell activation (Oliveira et al., 2010; Vargas et al., 2015).
Considering the multiplicity in the composition of fungal EVs,
a number of receptors are expected to participate in their
recognition. For instance, EVs from Paracoccidioides brasiliensis
carry membrane-bound mannose and N-acetylglucosamine and
are recognized by DC-SIGN and DC-SIGNR, but not dectin-1
or -2 (Peres da Silva et al., 2015).

In this review we discuss both direct and indirect putative
mechanisms of participation of EV-associated molecules during
interaction of pathogenic fungi with host cells. In this context,
host cell receptors and antibodies could target EV components.
Moreover, enzymes carried by these compartments could modify
the cell wall and its composition, which might impact cell wall
architecture and the pathophysiology of distinct fungal diseases.

ENZYMES FROM METABOLIC
PATHWAYS

The mechanisms of EVs biogenesis remains obscure but
apparently includes (i) multivesicular body formation followed
by exosome release, (ii) vesicle shedding from the plasma
membrane, and (iii) inverted macropinocytosis (Rodrigues et al.,
2007, 2014, 2015; Vargas et al., 2015). All three mechanisms
are in agreement with the compositional complexity of EVs,
including membrane and cytoplasmic molecules (Albuquerque
et al., 2008; Rodrigues et al., 2008; Vallejo et al., 2011; Wolf
et al., 2014; Gil-Bona et al., 2015a; Vargas et al., 2015).

Proteomic analyses of fungal EVs from diverse species clearly
show a considerable number of enzymes that are associated
with metabolic routes (Table 1) (Albuquerque et al., 2008;
Rodrigues et al., 2008; Vallejo et al., 2011; Vargas et al., 2015).
Some of these enzymes are actually conserved among EVs
produced by distinct fungal species. Many of them are also
considered as moonlighting proteins, implying primary and
secondary biological functions (Jeffery, 2014). Major hits include
enzymes required for glycolysis, fermentation, gluconeogenesis,
pentose phosphate, tricarboxylic acid, and glyoxylate cycles
(Table 1) (Albuquerque et al., 2008; Rodrigues et al., 2008; Vallejo
et al., 2011; Vargas et al., 2015). In this group of molecules,
glyceraldehyde-3-phosphate dehydrogenase (GAPDH), enolase,
and transaldolase were consistently detected in C. neoformans,
C. albicans, P. brasiliensis, and Histoplasma capsulatum EVs by
proteomic analysis (Rodrigues et al., 2008; Vallejo et al., 2011;
Wolf et al., 2014; Gil-Bona et al., 2015a; Vargas et al., 2015).
According to Gozalbo et al. (1998) GAPDH, a typical cytoplasmic
protein, also decorates the outermost layer of the C. albicans
cell wall where it mediates adhesion to laminin and fibronectin.
The protein, however, is apparently a poor immunogen, since
vaccination with GAPDH or exposure of mice to antibodies
against GAPDH did not impact the outcome of disseminated
candidiasis (Gil et al., 2006). GAPDH was also detected at the
cell surface of P. brasiliensis yeast forms (Barbosa et al., 2006),
where it also promoted binding to fibronectin, laminin, and
type I collagen. Adherence and internalization of P. brasiliensis
yeast forms by pneumocytes was reduced when fungal cells were
pretreated with antibodies to P. brasiliensis GAPDH or in the
presence of the purified enzyme (Barbosa et al., 2006).

Enolase is another example of an immunogenic, cytoplasmic
protein that actively participates in the fungal−host cell interface.
This antigen was detected at large amounts in C. albicans
supernatants (Sundstrom and Aliaga, 1994). In addition, enolase
is one of the main cell wall proteins of C. albicans (Angiolella
et al., 1996). In fact, enolase is considered the humoral
immunodominant antigen in germ free mice and in humans
with disseminated candidiasis (Sundstrom et al., 1994; Pitarch
et al., 2008). Li et al. (2013) suggested that IgG antibodies against
Candida enolase and aldolase, in combination, could be markers
to diagnose invasive candidiasis. In contrast to GAPDH, anti-
enolase antibodies are at least partially protective in murine
candidiasis (van Deventer et al., 1996; Montagnoli et al., 2004;
Li et al., 2011). Besides its role in the glycolytic pathway
and immunogenic properties, enolase participates in host cell
adhesion. For instance, the C. albicans enzyme recognized
plasmin and plasminogen (Jong et al., 2003). Furthermore,
plasmin-bound yeast cells displayed an improved ability to
induce fibrinolysis in a matrix-gel assay as well as to cross
an in vitro blood brain barrier system. Likewise, enolase can
participate during C. albicans intestinal colonization. Yeast
adhesion to the intestinal epithelium was inhibited by enolase
containing-disks or by pretreatment with antibodies to enolase
(Silva et al., 2014). Similarly, adhesion of P. brasiliensis to host
cells and fibronectin required enolase, which is also cell wall-
bound in this fungus (Nogueira et al., 2010; Marcos et al.,
2012). The relevance of enolase during infection was confirmed
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TABLE 1 | Major proteins characterized in pathogenic fungi extracellular vesicles (EVs) and involved with metabolic routes, cell wall remodeling, and
heat shock response.

Candida albicans Histoplasma capsulatum Cryptoccocus neoformans Paracoccidioides brasiliensis

Glycolysis

Hexokinase + +

Phosphoglucose isomerase + +

Aldolase + + +

Triose phosphate isomerase + +

GAPDH + + + +

Phosphoglycerate kinase + + +

Phosphoglycerate mutase +

Enolase + + + +

Pyruvate kinase + + +

Aldehyde dehydrogenase + + +

Fermentation

Alcohol dehydrogenase 2 + +

Pyruvate decarboxylase + + +

Gluconeogenesis

Phosphoglucomutase +

Fructose-1,6-bisphosphatase + +

Phosphoenolpyruvate
carboxykinase

+ + +

Pyruvate carboxylase + +

Pentose phosphate

Lactonase

6-Phosphogluconate
dehydrogenase

+ + + +

Transaldolase + + + +

Transketolase + + + +

Triosephosphate isomerase + + +

Tricarboxylic acid cycle

Pyruvate dehydrogenase + + +

Citrate synthase + + +

Aconitase +

Isocitrate dehydrogenase +

α-Ketoglutarate dehydrogenase + +

Succinyl-CoA synthetase +

Succinate dehydrogenase +

Fumarase +

Malate dehydrogenase + +

Glyoxylate cycle

Aconitase +

Isocitrate lyase +

Malate synthase + +

Cell wall architecture
∗Chitinase + + +

β -1,3-glucosyltransferase + + +

β -1,3-glucan synthase +

β -1,6-glucan synthase

α-1,2-Mannosylphosphate
transferase

+

α-1,3-glucan synthase +

α-1,3-glucanase +

∗∗β -1,3-glucanase + + +

Chitin synthase + + +

(continued)
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TABLE 1 | continued

Candida albicans Histoplasma capsulatum Cryptoccocus neoformans Paracoccidioides brasiliensis

Chitin deacetylase +

Glycosidase + +

Mannosidase +

Heat shock proteins

HSP10 +

HSP12 +

HSP30 + +

HSP60 +

HSP70 + + + +

HSP82 +

HSP88 + +

HSP90 + + +

HSP98 +

∗any type of chitinase (secreted or cell wall associated). ∗∗endo or exo glucanase.

by the demonstration that its expression was upregulated in
yeast cells of P. brasiliensis recovered from infected mice tissues
(Nogueira et al., 2010). In addition, enolase and GADPH
association with plasminogen resulted in plasmin formation
through tissue plasminogen activator in a lysine dependent
fashion. As a consequence fibronectin was degraded on the
fungus surface. Recently, enolase was also detected at cell surface
of A. fumigatus, A. flavus, A. terreus, A. nidulans, and C. glabrata
(Funk et al., 2016). As observed for other fungal species,
enolase from A. fumigatus binds to plasminogen remaining
accessible to plasminogen activator uPA, which confirms its
potential to participate during fungal dissemination (Funk et al.,
2016).

Additional metabolism-related enzymes have been associated
with host cell recognition. Phosphoglycerate mutase 1 (Pgmt1)
from C. albicans binds to factor H, FHL-1 and plasminogen
(Crowe et al., 2003; Poltermann et al., 2007). Lopez et al.
(2014) also demonstrated that Pgmt1 interacted with fibronectin
and vitronectin. Pgmt1 is recognized by human umbilical vein
endothelial cells (HUVEC), keratinocytes (HaCaT cells), and
U937 monocytic cells (Lopez et al., 2014). Consistent with these
results, C. albicans mutants in which the enzyme was knocked
out displayed a reduced capacity to bind HUVECS. Thus, Pgmt1
appears to be linked to fungal pathogenesis by activating the
factor H, FHL-1, and plasminogen for immune evasion and
degradation of extracellular matrices. The notion that metabolic
enzymes in fact affect fungal pathogenesis was confirmed by
results with triosephosphate isomerase (Tpi). This enzyme was
also found at cell wall of P. brasiliensis and binds to laminin
(Pereira et al., 2007). The use of polyclonal antibodies to Tpi
inhibited the interaction of yeast with epithelial cells in vitro,
suggesting that it also intermediates the association with host
cells.

The enzymes mentioned above and others can operate
through integrated mechanisms. Crowe et al. (2003) reported
at least eight plasminogen-binding proteins at the cell wall of
C. albicans (Crowe et al., 2003). Six of them were detected in EVs
produced by C. albicans, including the enzymes Pgmt1, alcohol

dehydrogenase, GAPDH, phosphoglycerate kinase, and aldolase
(Gil-Bona et al., 2015a; Vargas et al., 2015). These proteins
were associated with the capacity of C. albicans to activate
plasminogen, resulting in more effective tissue invasion (Crowe
et al., 2003).

The combination of proteins exported in EVs could influence
recognition of other fungal species by host cells. Fibronectin,
vitronectin and laminin recognize cytoplasmic proteins that are
surface-exposed in C. parapsilosis and C. tropicalis pseudohyphae,
including malate synthase, glucose-6-phosphate isomerase,
6-phosphogluconate dehydrogenase, enolase, fructose-1,6-
bisphosphatase, transketolase, transaldolase, and elongation
factor 2 (Kozik et al., 2015). In C. neoformans, phosphoglycerate
kinase, transaldolase, aldolase, and glutamate dehydrogenase
demonstrated the capacity to bind plasminogen (Stie et al., 2009).
As shown in other species, surface-bound active plasmin in
C. neoformans increased the ability of the fungus to penetrate the
brain.

Association with extracellular matrix proteins and activation
of plasmin are not the only potential activities of glycolytic
enzymes in C. albicans. Karkowska-Kuleta et al. (2011) showed
that enolase, Tgpm1, and Tpi are able to bind kininogen
culminating with kinin activation (Karkowska-Kuleta et al.,
2011). These studies support the hypothesis that fungal
EVs correspond to antigen-rich compartments responsible for
the delivery of metabolic enzymes interfering with host’s
physiology.

HEAT SHOCK PROTEINS

Similar to what is detailed for the above glycolytic enzymes,
HSP70 is carried by fungal EVs through the cell wall
(Albuquerque et al., 2008; Rodrigues et al., 2008; Vallejo et al.,
2011; Wolf et al., 2014; Gil-Bona et al., 2015a; Vargas et al.,
2015). Its participation during interaction with host cells has
been investigated in C. neoformans and C. albicans. In the
former, HSP70 is present at the fungal surface, within the
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capsular network (Silveira et al., 2013). Recombinant HSP70 (Cn-
rHSP70) from C. neoformans is efficiently internalized by the
macrophage like-cell line J774.1 and, to a minor extent, by A549
pneumocytes. Pre-treatment of J774.1 cells with Cn-rHSP70
does not impair phagocytosis, but increases fungal survival
within macrophages accompanied by a decrease in nitric oxide
(NO) production. In addition Cn-rHSP70 can upregulate TLR4
expression in macrophages (Silveira et al., 2013) and directly
interfere with early macrophage polarization, limiting innate
control of C. neoformans (Eastman et al., 2015). These results
indicate that EVs carry proteins that facilitate C. neoformans
survival within the host.

Candida albicans expresses two major HSP70 proteins,
SSA1 and SSA2 (Lopez-Ribot et al., 1996). SSA2 has been
immunolocalized at the plasma membrane and cell wall in both
yeast and hyphal forms (Lopez-Ribot et al., 1996). The protein
is recognized by histatin 5, a member of the family of small
histidine-rich antifungal peptides secreted by salivary glands (Li
et al., 2003), leading to its internalization and consequent fungal
death (Li et al., 2006). On the other hand SSA1 is required for
endocytosis by endothelial and epithelial cells in vitro through a
cadherin-dependent recognition mechanism (Sun et al., 2010).
Furthermore, SSA1 appears to act as an invasin contributing
to C. albicans virulence in hematogenously disseminated and
oropharyngeal candidiasis (Sun et al., 2010). In addition, SSA1
contributes at least partially to C. albicans penetration to
microfold-like cells generated by the co-culture of enterocytes
with B lymphocytes (Albac et al., 2016). Thus, proteins carried
by C. albicans EVs can have opposite effects when in contact with
host cells.

Vesicles from H. capsulatum carry distinct heat shock proteins
(Albuquerque et al., 2008). HSP60 is one of the major hits in
H. capsulatum EVs. A series of studies investigating binding
and internalization of H. capsulatum yeasts by macrophages
revealed a key function for this protein, which accumulates at the
fungal cell wall (Long et al., 2003). HSP60 from H. capsulatum
is recognized by the integrin CD18, a CR3 subunit at the
macrophage cell surface (Long et al., 2003; Habich et al.,
2006). Through this association yeasts of H. capsulatum are
internalized and evade the macrophage defense (Strasser et al.,
1999; Woods, 2003). In addition, HSP60 is considered an
immunodominant antigen that orchestrates the adaptation to
temperature stress (Deepe and Gibbons, 2002; Scheckelhoff and
Deepe, 2002; Guimaraes et al., 2011b). Immunization of mice
with recombinant HSP60 induces a protective response against
H. capsulatum (Deepe and Gibbons, 2002; Scheckelhoff and
Deepe, 2002). Furthermore, passive administration of IgG1 and
IgG2a against HSP60 in a murine model of histoplasmosis
promotes a protective effect associated with higher levels of
IL-2, IL-12, and IFN-γ and decreased levels of IL-4 and IL-10
(Guimaraes et al., 2009). Different independent mechanisms
could be linked to the antibody effect in vivo. First, antibodies to
HSP60 alter the rates of phagocytosis and killing of H. capsulatum
yeast cells by host effector cells (Guimaraes et al., 2009) as
well as cause agglutination of H. capsulatum yeasts, which
further alters interactions with macrophages and induces changes
in macrophage antifungal functions (Guimaraes et al., 2011a).

Recently, we demonstrated that H. capsulatum yeasts exposed
to antibodies to HSP60 release EVs with different sizes and
altered protein loads, including varying the quantity of virulence-
associated products, when compared to untreated controls, which
suggests that antibodies alter fungal susceptibility to host defenses
(Baltazar et al., 2016). In this scenario, HSP60 emerges as an
interesting target for the development of new therapies against
H. capsulatum.

POLYSACCHARIDE HYDROLASES

As mentioned previously, the complexity of the cell wall
requires highly coordinated mechanisms to allow morphological
rearrangements supporting fungal growth, budding and hyphal
formation. In addition, cell wall composition can be robustly
modified according to the species and growth conditions (Erwig
and Gow, 2016). Figure 1 shows a simplified general picture
of the fungal cell wall in which layers of chitin are displayed
adjacent to the cell membrane, although oligomers of chitin have
been observed in other regions of the fungal surface (Fonseca
et al., 2009). The main chitin layers are connected to a glucan
network that can include β1,3, β1,4, β1,6, and α1,3 linkages
(Free, 2013; Erwig and Gow, 2016). Proteins are associated to
the cell wall (cell wall proteins, CWP) through both covalent
and non-covalent bonds (Chaffin, 2008; Heilmann et al., 2012;
Orlean, 2012). At least three types of proteins can be covalently
linked to fungal polysaccharides: (i) proteins with an alkali-
sensitive linkage (ASL), which are linked to β1,3 glucans, (ii)
proteins covalently bound to β-1,6-glucan via a remnant of
a glycosylphosphatidylinositol (GPI) anchor, and (iii) proteins
linked to wall polysaccharides through disulfide bonds. Non-
covalently bound proteins encompass transitory polypeptides
that are synthesized intracellularly and targeted for extracellular
secretion (Chaffin, 2008).

Environmental changes are associated with cell wall
remodeling, including nutrient availability, pH and temperature
(Sosinska et al., 2008; Heilmann et al., 2013; Ene et al., 2015).
In a recent study, Ene et al. (2015) demonstrated substantial
cell wall transformation after only thirty seconds in response
to hyperosmotic stress. They showed changes in cell wall
volume can be accompanied by ultrastructural adjustments,
including (i) increase of the inner β-glucan and chitin layers
and (ii) contraction of the mannoprotein layer. These drastic
modifications require enzymatic activities of synthesis and
degradation. To hydrolyze structural components, chitinases,
mannosidases, and glucosidases (glucanases) are mandatory.
In fungal EVs a number of hydrolases, including glycosidases,
lipases, and proteases, were characterized (Rodrigues et al., 2007,
2008; Albuquerque et al., 2008; Vallejo et al., 2011; Gil-Bona
et al., 2015a; Vargas et al., 2015). These compartments could
be responsible for prompt changes at cell wall by releasing
pre-formed enzymes during a stress response.

Several host cellular receptors for fungal cell wall
polysaccharides are reported in the literature, including CR3
(CD18/CD11b), Toll like receptors (TLRs), Dectin 1 and 2, DC-
SIGN, mannose receptors, CD14, lactosylceramide, and Mincle
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(for details, see Zimmerman et al., 1998; Kimberg and Brown,
2008; Barreto-Bergter and Figueiredo, 2014; Dalonso et al.,
2015). Although functional studies of polysaccharide recognition
have traditionally focused on typical cell wall components,
it is important to mention the products of polysaccharide
hydrolases have similar potential to be recognized by receptors
and immunologically active. For instance, in the C. neoformans
model, chitooligomers released through chitinase activity form
soluble complexes with capsular GXM, resulting in hybrid
glycans with unique immunological activity (Ramos et al., 2012).
Enzymatically released oligosaccharides and (glyco)proteins
could also modify the extracellular microenvironment and
potentially impact the immune response, by scavenging
antibodies and carbohydrate binding proteins (CBPs). Finally,
cell wall components can also suffer modifications derived from
the activity of host hydrolases. In C. neoformans, chitin cleavage
via chitotriosidase promoted pathologic type-2 helper T cell
responses (Wiesner et al., 2015).

The level of glucanase activities at the cell wall can
potentially influence fungal recognition, finally interfering with
receptor-ligand connections. For instance, along with CR3
(CD18/CD11b), dectin-1 is a major ligand responsible for
β1,3 glucan cell wall detection culminating with phagocytosis,
oxidative burst response and cytokine production (Brown and
Gordon, 2001; Huang et al., 2015). Host cells that express dectin-
1 include monocytes, macrophage, neutrophils, and dendritic
cells (Taylor et al., 2002; Willment et al., 2005). Li et al.
(2012) showed that treatment of C. albicans with β1,3 glucanase
abolished fungal recognition through dectin-1 by neutrophils.
Although some authors have shown that either soluble and
particles of β1,3 glucans modulate the function of host cells
(Drummond and Brown, 2011), studies by Goodridge et al.
(2011) suggested that signaling is triggered only after dectin-
1 binding to particulate β-glucans. The fact that particles of

β1,3 glucans have a higher valence for dectin-1 recognition and
consequent enhanced efficacy in the induction of cross-talks
between other ligands, including CR3 and TLRs (O’Neill, 2008),
suggests that the stimulatory mechanisms triggered by soluble
and particle β1,3 glucans must be in fact distinct. The major
β1,3 glucanases characterized in C. albicans EVs were Xog1p,
Eng1, Sun41 and MP65 (Gil-Bona et al., 2015a; Vargas et al.,
2015). Xog1p is the major β-1,3-exoglucanase in C. albicans
(Gonzalez et al., 1997) that is a receptor for the antimicrobial
peptide LL-37, produced by human neutrophils (Turner et al.,
1998; Tsai et al., 2011a). LL-37 kills C. albicans and, in addition,
reduces binding of C. albicans to plastic surfaces, oral epidermoid
OECM-1 cells, and murine urinary bladders at sub-inhibitory
concentrations (Tsai et al., 2011b). Additional ligands to LL-37
include mannans, glucans, and chitin (Tsai et al., 2011b). The
mechanisms involved in inhibition of cell adhesion include direct
competition and interference with glucanase activities leading to
disturbance of cell wall remodeling (Tsai et al., 2011b; Chang
et al., 2012). The putative glucosidase SUN41 and MP65 are also
exported in C. albicans EVs (Gil-Bona et al., 2015a; Vargas et al.,
2015). SUN41 is regularly involved with cytokinesis, cell wall
biogenesis, adhesion to host tissue, and biofilm formation (Hiller
et al., 2007).

MP65 is a major immunogenic mannoprotein secreted by
C. albicans and other Candida species (Gomez et al., 1996;
Karkowska-Kuleta et al., 2015). MP65 is found at the cell wall
and its secretion occurs potentially due to the presence of a Kex2
site (Newport et al., 2003). A protective response generated after
vaccination with a low-virulence Candida strain was associated
with cell-mediated immunity disclosed by MP65 stimulation of
splenocytes in vitro and a delayed-type hypersensitivity response
in vivo (Mencacci et al., 1994; Cassone et al., 1998). Human
DCs were stimulated by MP65 culminating with TNF-α and
IL-6 release and the activation of IL-12 expression. Maturation

FIGURE 1 | Schematic illustration of a fungal cell wall and its major polysaccharides and proteins (based on species with protein EV composition
characterized). Extracellular vesicles (EVs) are shown as bilayered compartments. Structural polysaccharides include chitin (green, close to plasma membrane),
β1,3 (blue), and β1,6 glucans (yellow). Chitin oligomers (green, distributed across the cell wall), mannans, and mannoproteins (solid and fuzzy red) are also illustrated.
EVs traverse the cell wall potentially promoting remodeling through hydrolysis of polysaccharides and mannoproteins and exposing internal structural components to
the extracellular environment. For didactic purposes, melanin, lipids, capsule, β 1,4, and α 1,4 glucans and other cell wall components are not illustrated in this
model.
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of DCs was confirmed by increasing co-stimulatory molecules
such as CD40, CD80, CD86, MHC class II, and decreasing
CD16, CD32, and CD64 (Pietrella et al., 2006). Recombinant
MP65 was also internalized by macrophages and DCs in a
mechanism at least partially associated with a RGD peptide
sequence (Pietrella et al., 2008). However, differently from the
native mannoprotein, TNF-α and IL-6 were not induced by
recombinant MP65 (Pietrella et al., 2008). These data suggested
that cytokine production was potentially stimulated by the glycan
moiety of MP65, probably through lectin and TLR-dependent
mechanisms, as suggested by Netea et al. (2006). However, both
cells were able to stimulate T-cell activation with IFNγ and IL-4
production, confirming the potential activity of the protein
sequence of MP65 (Pietrella et al., 2008). In C. albicans, the
activity of β1,3 glucanase also appears to be involved with yeast
filamentation at 37◦C, which also supports its relevance during
infection progress (Xu et al., 2013). Influence of other glucanases
exported in C. albicans, H. capsulatum, C. neoformans, and
P. brasiliensis EVs during host-cell recognition has not been
reported in the literature; however, as mentioned previously,
their activities as cell wall remodeling enzymes could impact
the distribution of native proteins, polysaccharides, and their
products of hydrolysis, consequently modulating the immune
response.

CONCLUDING REMARKS

The current literature shows that the fungal cell wall composition
is highly complex and varies considerably according to the
species investigated. The basic cell wall network is composed by
structural components covalently connected to each other. Thus,
molecular changes at this level require an intense participation
of hydrolytic enzymes and transient molecules. Furthermore,
such modifications interfere significantly with the way a fungal
pathogen is coated and directly influence its engagement with
a host cell. Based on the recent literature we believe that the
complexity of the fungal cell wall could be significantly impacted
by the presence and passage of EVs. The presence of enzymes
and virulence regulators characterized in EVs produced by four
distinct major pathogens suggests that these compartments could
tailor the cell wall supporting significant changes in short periods
of time. The ability of other medically relevant fungal species,
including molds such as Aspergillus sp, to release EVs is still under
investigation. In fact, typical cytoplasmic and membrane proteins
from A. fumigatus were detected at the cell wall (Champer

et al., 2016), supporting the hypothesis that they are trafficked
in EVs. In this sense, hexokinase, aldolase, phosphoglycerate
mutase, β1,3 glucosyltransferase, chitinase, mannosidase, β1,3
glucanase, among others, were characterized at cell wall extracts
from A. fumigatus (Champer et al., 2016). In addition, enolase,
transaldolase, β1,3 glucosyltransferase, β1,3 glucanase, α1,3
glucan synthase, α1,3 glucanase, chitinase, mannosidase were
detected in the A. fumigatus secretome (Adav et al., 2015;
Champer et al., 2016).

Through these heterogeneous compartments a number of
proteins reach the fungal cell surface, consequently modifying cell
wall composition and affecting fungal−host cell interactions. EVs
can also release immunoactive compounds to the extracellular
environment, impacting fungal pathogenesis. Consequently,
biogenesis of EVs is a potential target for the development
of novel antifungal drugs. In addition, the diversity of native
immunogenic proteins carried by EVs suggests that these
compartments are multi-antigen platforms that could be used in
vaccine formulations.
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