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Abstract: Salmonellosis is one of the most common and widely distributed foodborne 

diseases. The emergence of Salmonella strains that are resistant to a variety of antimicrobials 
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is a serious global public health concern. Salmonella enterica serovar Typhimurium definitive 

phage type 104 (DT104) is one of these emerging epidemic multidrug resistant strains. 

Here we collate information from the diverse and comprehensive range of experiments on 

Salmonella proteomes that have been published. We then present a new study of the 

proteome of the quinolone-resistant Se20 strain (phage type DT104B), recovered after 

ciprofloxacin treatment and compared it to the proteome of reference strain SL1344.  

A total of 186 and 219 protein spots were recovered from Se20 and SL1344 protein 

extracts, respectively, after two-dimensional gel electrophoresis. The signatures of  

94% of the protein spots were successfully identified through matrix-assisted laser 

desorption/ionization mass spectrometry (MALDI-TOF MS). Three antimicrobial 

resistance related proteins, whose genes were previously detected by polymerase chain 

reaction (PCR), were identified in the clinical strain. The presence of these proteins, 

dihydropteroate synthase type-2 (sul2 gene), aminoglycoside resistance protein A  

(strA gene) and aminoglycoside 6'-N-acetyltransferase type Ib-cr4 (aac(6')-Ib-cr4 gene), 

was confirmed in the DT104B clinical strain. The aac(6')-Ib-cr4 gene is responsible for 

plasmid-mediated aminoglycoside and quinolone resistance. This is a preliminary analysis 

of the proteome of these two S. Typhimurium strains and further work is being developed 

to better understand how antimicrobial resistance is developing in this pathogen. 

Keywords: Salmonella enterica serovar Typhimurium; DT104B; SL1344; proteome; 

aminoglycoside 6'-N-acetyltransferase type Ib-cr4 

 

1. Introduction 

Non-typhoid Salmonella is a common and widely distributed cause of food poisoning [1]. Even 

though non-typhoid Salmonella frequently causes self-limited infections, some strains can also cause 

complicated invasive infections that require antimicrobial therapy [2]. The global burden of disease 

caused by Salmonella infections is substantial and the public health impact is aggravated by 

antimicrobial resistance, which leads to increased morbidity, mortality, and treatment costs [3]. 

Nowadays, Salmonella clinical isolates show high rates of resistance to traditional antimicrobials. 

Fluoroquinolones and expanded-spectrum cephalosporins have remained effective against non-typhoid 

Salmonella infection but resistance to these agents is also increasing [2]. Ciprofloxacin is an important 

last resort antimicrobial to treat complicated Salmonella infections because it can penetrate macrophages 

and eliminate multidrug-resistant strains [4]. Nevertheless, ciprofloxacin-resistant strains are becoming 

more common. 

Salmonella is a prime model organism for infection biology research [5]. S. Typhimurium SL1344 

is among the most extensively studied pathogenic strains and is frequently used as a reference 

organism to investigate Salmonella pathogenicity [6]. However, considering the high plasticity of 

bacterial genomes, the adequacy of laboratory-adapted reference strains for the study of “real-world” 

pathogenesis is being questioned [7]. As laboratory reference strains are repeatedly passaged in vitro, 

they can become significantly differentiated from clinical samples. Studies based on laboratory strains 
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may therefore overlook important pathophysiological mechanisms that are only present in clinical 

strains [7]. 

S. Typhimurium phage type DT104 is an important multidrug-resistant clinical strain with an 

extensive host range that has been responsible for pandemic spread and many outbreaks over the last 

two decades [3,6]. Multiresistant DT104 strains were first isolated in the 1980s and commonly show 

resistance to ampicillin, chloramphenicol, streptomycin, sulfonamides and tetracycline (ACSSuT 

resistance type), with additional resistance to trimethoprim and ciprofloxacin [8]. Higher morbidity and 

mortality rates are likely to be associated with DT104 infections but it is not completely known why this 

particular strain has disseminated so successfully [6,8]. Recent studies have shown an emergence of 

hybrid virulence-resistance plasmids in S. Typhimurium DT104 that results from the integration of 

antimicrobial resistance genes into virulence plasmids involved in systemic infection [9]. These hybrid 

plasmids provide an adaptive advantage that enhances the epidemic potential of these strains. 

Antimicrobial resistance and virulence are determinant in the clinical outcome of severe Salmonella 

infections, so it is important to understand how the associated genetic mechanisms are regulated [10]. 

Proteomics approaches can be used to investigate how genetic diversity can lead to the emergence of 

new resistance phenotypes and which protein interactions or post-translational modifications (PTM) 

are associated with antimicrobial resistance [11]. Genome mining in Salmonella showed that, due to its 

metabolic robustness, the number of potentially lethal targets for antimicrobial drug development is 

smaller than expected. Directly identifying bacterial proteins which prevent antibiotic resistance might 

expand the conventional armamentarium [12,13]. In the last decade, MS-based proteomics has been 

advancing rapidly, generating more information on functional and regulatory features. Proteomics 

results provide the most realistic depiction of infective processes because the methods detect the final 

products of gene biosynthetic pathways that truly define a biological phenotype [11,14]. 

Two dimensional gel electrophoresis (2-DE) is still one of the most powerful methods to study 

crude protein mixtures, as it is a selective, specific, reproducible, and reliable way to analyze several 

hundred proteins in a single experiment [15]. The analysis of bacterial proteomes can provide a global 

view of physiological adaptation, and 2-DE coupled with peptide mass fingerprinting (PMF) has been 

established as a standard tool to study diverse cellular functions and regulation [16]. For instance, total 

bacterial proteomes from different strains can be compared to identify proteins that correlate with 

different antimicrobial resistance profiles [17]. Table 1 sumarizes information from the many studies 

that have investigated Salmonella serotypes at the proteomic level. 

In this work we investigated the complete proteomes of a clinical multidrug-resistant S. Typhimurium 

DT104B strain, designated as Se20 [18], and the reference S. Typhimurium SL1344 strain [19], in order 

to provide a snapshot of the major proteins involved in the basic cellular physiology of these strains, 

paying special attention to the expression of proteins related to antimicrobial resistance and virulence. 
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Table 1. List of Salmonella serotypes studied at the proteomic level with a short description of the main purpose and findings of each study. 

Serotype Strain Main Purpose Main Findings Ref. 

Typhimurium and 
Typhi 

LT2 and Ty2 

To perform a quantitative comparative proteomic 
analysis between S. Typhimurium and S. Typhi 

using SILAC coupled  
with LC-MS/MS. 

Potential biomarker proteins with serovar-specific  
expression were identified. Flagella and chemotaxis genes 
were down-regulated in S. Typhi and proteins involved in 

metabolism and transport of carbohydrates and amino  
acids were differentially expressed. 

[20] 

Infantis 
Soil isolate  
(from cattle 

manure) 

To elucidate the global modulation of bacteria 
and plant protein expression after Salmonella 

internalization into lettuce. 

Fifty proteins were differentially expressed between 
internalized and cutured S. Infantis. Internalized S. Infantis 

triggered the lettuce defense mechanisms. The bacteria might use 
ascorbate as a carbon source and require stress response proteins to 

cope with stresses incurred in plants. 

[21] 

Paratyphi A 

YN07077, 
GZ9A0503,  

ZJ98053,  
ATCC 9150 

To perform a 2-DE comparative proteomics 
analysis for 4 epidemic strains with different 

geospatial and temporal characteristics in order to 
obtain their core and pan proteomes. 

The proteomes of the four strains were highly conserved.  
Few strain-specific proteins were found and non-core proteins 
were found in similar categories as core proteins. Significant 
fluctuations in the abundance of some core proteins suggest a 

variation in protein expression in the different strains even when 
cultured in the same conditions. 

[22] 

Typhimurium ATCC 14028 
To profile the intact proteome by  

single-dimension ultra-high-pressure liquid 
chromatography coupled with Velos-Orbitrap MS. 

Identification of 563 proteins including 1665 proteoforms 
generated by PTMs. Report of a unique protein S-thiolation 

switch in response to infection-like conditions. 
[23] 

Typhimurium ATCC 14028 
To observe changes in protein abundance or 
location between phagosome-mimicking and 

standard laboratory conditions. 

The protein subcellular localization of over 1000 proteins was 
catalogued. New insights into dynamic protein localization 

and potential moonlighting. 
[24] 

Typhimurium ST23 

To elucidate biocide tolerance mechanisms by 
comparing 2-D DIGE protein profiles of a 

triclosan sensitive strain and the isogenic tolerant 
mutant in the presence and absence  

of triclosan. 

Triclosan exposure induced multiple changes in cellular 
metabolism, permeability, transport and also modifications 

involving mutations in the triclosan specific target FabI. 
Broader changes that may confer cross-resistance to 

antimicrobial agents were also observed. 

[25] 
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Table 1. Cont. 

Serotype Strain Main Purpose Main Findings Ref. 

Typhimurium SL1344 

To analyze differentially expressed proteins 
between a wild-type strain and an opgGH mutant 

to elucidate proteomic pleiotropy under  
low osmolarity. 

The opgGH mutant had decreased protein amounts, consistent 
with the genotype and the expected phenotypes, and revealed 
pleiotropic proteome effects likely to enable survival under  

low-nutrient and low-osmotic growth conditions. 

[26] 

Typhimurium, 
Typhi  

and Choleraesuis 

LT2,  
ATCC 33458  
and SC-B67 

To analyze the ability of pseudogenes to express 
normal protein sequences and to develop an 

experimental approach to detect recoding at the 
genomic scale using LC-MS/MS. 

The majority of pseudogenes failed to express, validating the 
overall accuracy of in silico annotation. A few annotated 
pseudogenes translated normal peptides, suggesting that 

recoding may be common in bacterial species. 

[27] 

Gallinarum 
9R and WT 

(287/91  
and 06Q110) 

To compare the proteome and transcriptome of 
wild-type and live vaccine strains of  

S. Gallinarum by 2-DE MALDI-TOF MS and 
microarray analysis. 

One protein relevant to virulence absent from 9R. Analysis 
revealed 42 virulence genes down-regulated in the 9R 

transcriptome. The attenuation of 9R may be associated with  
a combination of impaired virulence factors so reversion to 

virulence is probably not caused by single mutation. 

[28] 

Enteritidis, 
Typhimurium  

and Gallinarum 

Human and 
chicken isolates; 

9R 

To examine protein profile variability among  
S. Enteritidis, S. Typhimurium and S. Gallinarum 

by a comparative 2-DE MALDI-TOF MS 
proteomic analysis. 

A high level of variation between serotypes was observed and 
several serotype-specific factors were detected. Proteins related 
to virulence, such as β-lactamase, RfbH protein, and shikimate 

kinase were identified. 

[29] 

Typhimurium - 

To characterize the proteome and ionome of wild 
type and znuA mutant strains under Zn starvation or 
Zn-replete conditions to gain further insight into Zn 

influx regulation. 

Several differentially regulated proteins were predicted to be 
metal-binding proteins; their over-expression in the znuA 

mutant strain strictly depends on Zn starvation and correlates 
with differences found at the ionome level. 

[30] 

Typhimurium VNP20009 

To profile protein expression in the tumor-specific 
VNP strain under anaerobic and aerobic conditions, 

and to develop a hypoxia-inducible promoter 
system to confine expression of therapeutic genes 

within the tumor microenvironment. 

The hypoxia-inducible adhE promoter was screened from the 
hypoxia-regulated endogenous proteins of Salmonella and 

proof-of-principle was provided that these promoter systems 
can be employed to target the hypoxic region of solid tumors 

and exert enhanced anticancer effects. 

[31] 

Typhimurium ATCC 14028 
To identify effector proteins secreted under  

SPI-2-inducing growth conditions  
using LC-MS/MS. 

Eight novel effectors and ~80% of the previously reported 
ATCC14028 repertoire were identified including novel secreted 

effectors and new pathways for Salmonella virulence factors. 
[32] 
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Table 1. Cont. 

Serotype Strain Main Purpose Main Findings Ref. 

Typhimurium SL1344 
To identify post-transcriptional regulatory events 
by analyzing proteome changes after activation 

of the RcsCDB regulatory system. 

Two new post-transcriptional regulatory processes were defined, 
inverse regulation by the metE and pckA genes and expression 

control of the small RNA FnrS by the RcsCDB system. 
[33] 

Typhimurium MA6926 
To survey the proteomic changes in response to 

low Mg2+ concentrations or CAMP in a  
SILAC-based quantitative proteomic approach. 

CAMP activates a portion of the PhoP/PhoQ regulatory 
network. Low Mg2+ concentrations up-regulate nearly all known 
and some previously unknown members of this network, and 

also proteins regulated by IHF and RpoS. 

[34] 

Typhi CT18 
Characterization of anti-S. Typhi antibody 

responses in bacteremic Bangladeshi patients by 
immunoaffinity proteomics-based technology. 

Identification of 57 proteins whose capture by affinity-purified 
antibody fractions from plasma of patients with S. Typhi 

bacteremia was significantly increased compared to the capture 
by the column without antibody. 

[35] 

Typhimurium ATCC 14028 
Proteome profiling of wild-type and mutant strains 
with ProteinChip arrays coupled to SELDI-TOF. 

Revelation of differential regulation of the σ-dependent 
yciGFE(katN) locus by YncC and H-NS in Salmonella and 

Escherichia coli K-12. 
[36] 

Enteritidis 
chicken  

isolate (LK5) 

Global 2-DE MALDI-TOF MS protein analysis 
of S. Enteritidis adapted or unadapted  

to propionate. 

The stress-related proteins Dps and CpxR5 were up-regulated 
in propionate-adapted cultures and play an important role in 

propionate-induced acid resistance. 
[37] 

Enteritidis 
clinical  

isolate (SE2472) 

To develop a stable isotope labeling procedure 
coupled with MS analysis to carry out 

quantitative proteomic analysis of S. Enteritidis 
upon exposure to hydrogen peroxide. 

Identification of 76 proteins with H2O2 modulated expression. 
SPI-1 effector SipC was overexpressed and was found to be 

highly expressed in the spleen at late stage of in vivo infection, 
suggesting a role of SipC in supporting survival and replication 

under oxidative stress and during systemic infection in vivo. 

[38] 

Typhimurium  
and Enteritidis 

wild boar and wild 
rabbit isolates 

To determine and compare the proteomes of  
S. Typhimurium and S. Enteritidis recovered from 

faecal samples from wild boars and rabbits. 

Different serotypes had different SDS-PAGE profiles. Proteins 
related to antibiotic resistance, pathogenesis and virulence 

were identified in both strains. 
[39] 

Typhimurium 
LT2  

(ATCC 700720) 

To elucidate the expression of OMPs of  
S. Typhimurium using a LPI™ Flow-Cell  

lipid-based protein immobilization technique. 

The LPI™ technique provided wide coverage with 54 OMPs 
identified, enabling the incorporation of a multi-step protease 

workflow that allows the identification of more membrane 
proteins with higher confidence. 

[40] 
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Table 1. Cont. 

Serotype Strain Main Purpose Main Findings Ref. 

Thompson MCV1 
To study the proteome changes of S. Thompson 

during stress adaptation to sublethal concentrations 
of thymol with 2-DE MALDI-TOF MS. 

Several proteins from different functional classes were 
significantly up- or down-regulated showing that thymol plays 

a role in altering very different metabolic pathways. 
[41] 

Typhi  
and Typhimurium 

Ty2, CT18, Ty800  
and LT2 

Comparative proteomic analysis to study  
PhoP/Q-dependent protein expression differences 

between S. Typhi and S. Typhimurium. 

Identification of 53 PhoP-regulated proteins in LT2 and 56 in  
S. Typhi, including 3 S. Typhi-unique proteins (CdtB, HlyE and 
STY1499). First protein expression profile of the live attenuated 

bacterial vaccine studied in humans Ty800. 

[42] 

Typhimurium 
clinical isolate  
and NCTC 74 

To characterize proteins that are differentially 
expressed in the presence or absence of oxygen 
to reveal proteins that may allow the species to 

adapt and initiate infection in anaerobic 
conditions. 

A drastic transformation in expression was observed with the 
shift to anaerobiosis. The responses of different isolates were 

not uniform and the high degree of change showed the 
potential limitation of using laboratory-grown strains to search 

for vaccine targets. 

[43] 

Typhimurium 
DT104  

(ATCC 700408) 

To determine if protein profiling by GC-MS 
analysis of fatty acids with PCA and 2-DE can be 

used for rapid assessment and interpretation of 
the impact of SC-CO2 treatment. 

SC-CO2 caused significant alterations in the fatty acid and protein 
profiles with 11 spots becoming more than 50% less intense. The 
low levels of the latter proteins may have negatively affected the 

survival of microbial cells. 

[44] 

Gallinarum  
and Enteritidis 

JOL394 

To discover host specificity and/or pathogenicity 
proteins among different host-adapted serovars 

by 2-DE MALDI-TOF MS/QRT-PCR analysis of 
serovar Gallinarum in comparison  

with Enteritidis. 

In S. Gallinarum 22 proteins were over-expressed comparing to 
S. Enteritidis. Proteins were identified that are related to 

virulence or have unknown functions that may be important in 
the host adaptation and/or pathogenicity of S. Gallinarum. 

[45] 

Typhimurium ATCC 14028 

To investigate the macrophage response to 
infection by infecting RAW 264.7 macrophages 

and analyzing time course responses at the global 
proteomic level. 

Identification of 1006 macrophage and 115 Salmonella 
proteins with high confidence. Most of the Salmonella proteins 
were observed in the late stage of infection, which is consistent 

with the fact that the bacterial cells proliferate inside RAW 
264.7 macrophages. 

[46] 
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Table 1. Cont. 

Serotype Strain Main Purpose Main Findings Ref. 

Typhimurium ATCC 14028 

To determine the impact of a low Mg2+/pH 
defined growth medium (MgM) on the proteome 

of S. Typhimurium by a comparative  
LC-MS/MS approach. 

MgM shock-induced proteins usually induced by low O2. MgM 
dilution induced the T3SS proteins SsaQ and SseE and also the 
biotin biosynthesis proteins BioB and BioD that also increased 

after infection of RAW 264.7 macrophages. 

[47] 

Typhimurium SL1344 
To investigate the role of AI-2/LuxS by a 

comparative 2D-DIGE analysis of wild type and  
a luxS mutant strain. 

A few proteins were differentially expressed but further 
analysis of the LuxS protein revealed a PTM and a potential 

translocation across the cytoplasmic membrane. 
[48] 

Typhimurium SL1344 

To investigate the combined effect of low oxygen 
tension and high osmolarity on the proteome of 

S. Typhimurium compared to standard laboratory 
conditions by 2-D DIGE. 

Under in vivo-like conditions anaerobic fumarate respiration and 
the utilization of 1,2-propanediol are up-regulated and an arginine 

deiminase pathway is expressed for l-arginine catabolism. 
Proteins involved in quorum sensing and virulence are also 

differentially expressed. 

[49] 

Typhimurium SL1344 
To determine and compare the proteomes of 
three triclosan resistant mutants to identify 
proteins involved in triclosan resistance. 

Proteins involved in pyruvate or fatty acid production were 
differentially expressed in all mutants. Triclosan resistance is 

multifactorial and several resistance mechanisms act in synergy 
to achieve high-level resistance. 

[50] 

Typhimurium ATCC 13311 
Characterization of the OMP-immunoreactive 

fractions in Salmonella induced reactive arthritis by 
SDS-PAGE and MALDI-TOF MS. 

Identification of 10 low molecular weight OMPs which are  
T-cell immunoreactive in patients with Salmonella induced 

reactive arthritis/undifferentiated spondyloarthropathy. 
[51] 

Typhimurium 
01-45, R200  

and 6B7 

To compare OMP profiles between a yjeH 
mutant with reduced resistance to ceftriaxone and 

the resistant parental strain, by 2-DE  
MALDI-TOF MS/MS. 

yjeH gene inactivation resulted in a 4-fold reduction in 
ceftriaxone resistance and in an underexpression of STM1530, 

STM3031, MopA, and NuoB, but overexpression of OmpD. 
Expression of the S. Typhimurium yjeH gene also confers 

ceftriaxone resistance in E. coli. 

[52] 

Typhimurium CS022 
To compare a proteome defined by shotgun 
proteomics directly on an LTQ-FT and by 

proteome pre-fractionation on an LCQ-DUO. 

Shotgun proteomic analyses on the LCQ-DUO adequately 
characterized a PhoP constitutive strain if proteome  
pre-fractionation steps and gas-phase fractionation  

were included. 

[53] 
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Serotype Strain Main Purpose Main Findings Ref. 

Typhimurium STM14028 

To identify key proteins linked to macrophage 
colonization by LC-MS analysis of protein 

abundance in Salmonella cells isolated from 
RAW264.7 macrophages, with or without 
functional Nramp1, at various time points  

of infection. 

After infection 39 proteins were strongly induced, 6 of which are 
modulated by Nramp1, including STM3117. Deletion of the 
STM3117 gene caused a dramatic reduction in the ability to 
colonize macrophages, demonstrating that STM3117 is an 

important virulence factor that promotes replication  
inside macrophages. 

[54] 

Typhimurium SL1344 
To investigate the physiological response of  

S. Typhimurium to fluoroquinolone antibiotics by  
2-DE and 2D-LC-MS. 

Several proteins were over or underexpressed. An increase in 
AcrAB/TolC was associated with resistance while F1F0-ATP 
synthase and Imp increased in response to fluoroquinolones. 

[55] 

Typhimurium 
ATCC 14028  

and LT2 

To analyze the S. Typhimurium proteome under 
laboratory and infection-like conditions through a 
LC-MS-based “bottom-up” proteomic approach. 

A comprehensive view of protein abundances as they vary with 
respect to time, environment, and genotype. Results support 
earlier observations that pdu gene expression contributes to  

S. Typhimurium pathogenesis. 

[56] 

Typhimurium  
and Pullorum 

NCTC 74, 4 clinical 
isolates, A01, C01; 
NCTC 10704, B52 

To compare the expression patterns of host 
restricted S. Pullorum and host generalist  
S. Typhimurium isolates with a combined  

2-DE LC-MS/MS proteomic approach. 

Isolates varied greatly and, in some cases, more between the same 
serotype than between different serotypes. New serotype-specific 

proteins were identified, including intermediates in sulphate 
utilization and cysteine synthesis. 

[57] 

Typhi 
clinical isolate 

(5866) 

Analysis of the pleiotropic effects of a deficiency 
in the periplasmic disulfide-bond oxidoreductase 

DsbA using 2-DE MALDI-TOF MS. 

In total, 25 spots were exclusive to the wild-type strain, 10 to the 
dsbA-null mutant, and 21 were common to both. DsbA,  

glucose-1-phosphatase, flagellin and the AI-2  
autoinducer-producing LuxS were absent in the dsbA-null mutant. 

[58] 

Typhimurium SL1344 
Proteome characterization by 2D-HPLC MS to 
provide a platform for subsequent proteomic 

studies of low level multiple antibiotic resistance. 

A total of 34 OMPs were detected and 20 proteins previously 
associated with the mar locus in E. coli were also identified 
including the key MAR effectors AcrA, TolC and OmpF. 

[59] 

Typhimurium 
UK1 (WT)  
and RJ1827 

To compare changes in gene expression caused 
by fis mutation through a 2-DE MS proteomic 
approach in order to elucidate the role of Fis  

in Salmonella virulence. 

Identification of 11 proteins upregulated and 7 downregulated by 
Fis, involved in translation, sugar metabolism, flagellar synthesis, 

and virulence. Changes in SPI expression suggest that gene 
regulation in SPI-2 and in SPI-1 is affected by Fis. 

[60] 
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Serotype Strain Main Purpose Main Findings Ref. 

Typhimurium ATCC 14028 

To identify low-level expressed proteins by 
expressing several SPI2 T3SS putative proteins 
as recombinant products followed by by 2-DE 

MALDI-MS detection. 

Recombinant expression is a complementary tool to analyze low 
abundant or membrane proteins. Pre-fractionation and pulse 

labeling allowed the identification of growth phase regulated SPI2 
proteins that might not be detected otherwise. 

[61] 

Typhimurium SL1344 
To identify acid-regulated elements of the flagellar 

system and to study how they are regulated by  
low pH. 

Flagella-mediated cell motility is co-regulated by low pH via 
the PhoPQ signal transduction system. 

[62] 

Typhimurium SL1344 

To test the feasibility of proteome determination 
by identifying 53 randomly sequenced cell 

envelope proteins by N-terminal sequencing of 
spots from 2D gels. 

The existence of previously hypothetical proteins predicted 
from genomic sequencing projects was confirmed, and 
approximately 20% of the proteins had no matches in  

sequence databases. 

[63] 

Typhimurium SL1344 
To present a 2D reference map for proteins  

of the cell envelope fraction of  
S. Typhimurium SL1344. 

In total 49 proteins were identified by microsequencing and assigned 
to a 2D reference map. Of these, 10 proteins seem to be new and 
others closely match putative proteins or proteins found in other 

bacteria but not previously reported in salmonellae. 

[64] 

2-D DIGE, two-dimensional difference gel electrophoresis; CAMP, cationic antimicrobial peptides; GC-MS, gas chromatography—mass spectrometry; LC-MS/MS, 

liquid chromatography coupled with tandem mass spectrometry; OMPs, outer membrane proteins; PCA, principal component analysis; QRT-PCR, quantitative real  

time—PCR; SC-CO2, supercritical carbon dioxide; SDS-PAGE, sodium dodecyl sulfate—olyacrylamide gel electrophoresis; SELDI-TOF, surface-enhanced  

laser desorption/ionization-time of flight; SILAC, stable isotope labeling by amino acids in cell culture; SPI, Salmonella pathogenicity island; T3SS, type three  

secretion system. 
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2. Results and Discussion 

The proteomes of two S. Typhimurium strains, a multidrug-resistant phage type DT104B clinical 

strain (Se20) [18] and the phage type DT44 reference strain SL1344 [19,65], grown under standard 

culture conditions, were determined by 2-DE and MALDI-TOF MS identification. 

The S. Typhimurium DT104B clinical strain analyzed in this study was recovered from an elderly 

patient hospitalized with acute gastroenteritis and treated with ciprofloxacin. In vivo selection of 

quinolone and aminoglycoside resistance was observed post-treatment [18]. This strain was resistant to 

nalidixic acid, to all of the fluoroquinolones tested (ciprofloxacin, levofloxacin, ofloxacin and 

norfloxacin) and to the aminoglycosides amikacin, tobramycin, kanamycin and streptomycin. Strain 

Se20 was also resistant to tetracycline, trimethoprim/sulfamethoxazole, sulfonamides, trimethoprim 

and fusidic acid [18]. This strain harbored the antimicrobial resistance genes tet(A), strA, strB and sul2 

and the plasmid-mediated quinolone resistance genes qnrS1 and aac(6')-Ib-cr4. The S83Y substitution 

in GyrA, which confers quinolone resistance, was also detected [18,66]. The virulent S. Typhimurium 

SL1344 reference strain was originally isolated from a calf with salmonellosis and is resistant to 

streptomycin and sulfonamide antimicrobials [19,67,68]. In this work, we recovered 186 protein spots 

from the 2-DE gel of strain Se20 (Figure 1) and 219 spots from strain SL1344 (Figure 2). After  

MALDI-TOF MS analysis, a total of 178 (96%) proteins representing 143 unique gene products were 

identified in strain Se20 (Table S1) and 202 (92%) proteins representing 166 unique gene products were 

identified in strain SL1344 (Table S2). The Gene Ontology (GO) annotations database was used to 

search for the biological processes assigned to each protein. A clustering algorithm (simRel) relying on 

semantic similarity measures was used to reduce the redundancy of GO terms using the web server 

tool REViGO [69] and a broad overview of the gene product attributes was achieved by using a GO 

slim based on the generic GO slim developed by the GO consortium. Approximately 50% of the 

proteins identified in both strains were related to oxidation-reduction processes, protein metabolism 

(chemical reactions and pathways involving a specific protein, including protein modifications), 

nucleobase-containing compound metabolism (processes involving nucleobases, nucleosides, 

nucleotides and nucleic acids) and carbohydrate metabolism (Figure 3). Table 2 indicates some 

relevant proteins that were exclusively identified in each of the studied strains. 
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Figure 1. Stained 2-DE (two dimensional gel electrophoresis) gel of total proteins of 

Salmonella Typhimurium Se20 (phage type DT104B) using IPG (Immobiline™ pH 

Gradient) strips pH 3–10 NL (non-linear) for the first dimension. Numbered spots were 

excised for analysis by in-gel digestion and MALDI-TOF MS (matrix-assisted laser 

desorption/ionization mass spectrometry) identification, described in Table S1. 
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Figure 2. Stained 2-DE gel of total proteins of Salmonella Typhimurium SL1344 using 

IPG strips pH 3–10 NL for the first dimension. Numbered spots were excised for analysis 

by in-gel digestion and MALDI-TOF MS identification, described in Table S2. 
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Figure 3. Functional classification of proteins identified in the Se20 and SL1344 strains 

based on Gene Ontology. (a) Number of proteins in each category for Se20 (light gray) and 

SL1344 (dark gray); Relative percentages of protein functions in (b) Se20 and (c) SL1344. 

As this classification reflects the fact that single proteins can be involved in more than one 

process, the sum of proteins in all categories is higher than the total number of unique 

proteins identified. 
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Table 2. List of some relevant proteins exclusively identified either in Salmonella 

Typhimurium strain Se20 or in Salmonella Typhimurium strain SL1344. 

Strain Spots Protein Gene Biological Process 

Se20 

24/98 Flagellin fljB 
ciliary or bacterial-type  

flagellar motility 

75 
aminoglycoside 6'-N-acetyltransferase  

type Ib-cr, AAC(6')-Ib-cr4 
aac(6')-Ib-cr4 metabolic process 

99 ethanolamine ammonia-lyase heavy subunit eutB 
cellular amino acid  

metabolic process 

106 ATP-dependent protease hslU 
ATP catabolic process, 

proteolysis, response to 

stress, protein unfolding 
134 universal stress protein E uspE response to stress 

142/143 aminoglycoside resistance protein A strA response to antibiotic 

148 
Chain E, Alkyl Hydroperoxide Reductase C  

(Substrate-Ready Conformation) 
ahpC 

response to oxidative stress, 

oxidation-reduction process 

182 5'-nucleotidase ushA 
dephosphorylation, 

nucleotide catabolic process 

SL1344 

205/341 arginine deiminase arcA protein citrullination 

215 ornithine carbamoyltransferase arcB ornithine metabolic process 
225 fumarate reductase iron-sulfur subunit frdB tricarboxylic acid cycle 
227 carbamate kinase arcC arginine metabolic process 

237/238/287 glycerol-3-phosphate dehydrogenase glpD 
glycerol-3-phosphate  

metabolic process 

240 inosine 5'-monophosphate dehydrogenase guaB 
purine nucleotide  

biosynthetic process 

259 NADH dehydrogenase subunit G nuoG 
ATP synthesis coupled  

electron transport 
296 molecular chaperone DnaJ dnaJ response to stress 
332 Hydrogenase - - 

344 Phosphoglucomutase pgm 
carbohydrate metabolic 

process 
346 oligopeptidase A prlC proteolysis 

378 exonuclease III xth 
DNA catabolic process, 

exonucleolytic 
396 serine endoprotease htrA proteolysis 
406 cell invasion protein SipA sipA pathogenesis 

When comparing the proteins identified in each of the analysed strains, it is important to refer the 

exclusive presence of the aminoglycoside 6'-N-acetyltransferase type Ib-cr4 (AAC(6')-Ib-cr4) protein 

(spot 75) and the aminoglycoside resistance protein A (spots 142 and 143) in the Se20 clinical strain 

(Figure 1, Table S1). These two proteins reflect the antimicrobial resistance phenotype observed in 

Se20 for the aminoglycosides amikacin, tobramycin and kanamycin and for the fluoroquinolones 

ciprofloxacin, levofloxacin, ofloxacin and norfloxacin. The AAC(6')-Ib-cr4 protein is encoded by  

the aac(6')-Ib-cr4 gene, which was previously detected in this strain on plasmid pMdT1 [18,66].  
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The 225 amino acid protein here detected was predicted by ORF (open reading frame) Finder analysis 

to have a longer N-terminal length when comparing to other previously described functional aac(6')-Ib 

variants [66]. The position of spot 75 matches the theoretical molecular weight (MW) of 25031 Da  

and isoelectric point (pI) value of 5.2 estimated for AAC(6')-Ib-cr4. The AAC(6')-Ib-cr protein is  

a variant of the widespread aminoglycoside acetyltransferase AAC(6')-Ib that is usually responsible  

for resistance to amikacin, kanamycin and tobramycin. The AAC(6')-Ib-cr variant also acetylates 

ciprofloxacin and norfloxacin, but less efficiently than aminoglycoside substrates [70]. Acetylation 

occurs at the amino nitrogen on the piperazinyl substituent, so only fluoroquinolones with an 

unsubstituted piperazinyl group are substrates of AAC(6')-Ib-cr. Even though the presence of the 

aac(6')-Ib-cr gene confers only low-level resistance to substrate fluoroquinolones, it may facilitate the 

survival of target-site mutants with a 10-fold increase in their mutant prevention concentration [71]. 

The aminoglycoside resistance protein A, coded by the previously detected strA gene, is an 

aminoglycoside 3'-phosphotransferase that catalyzes the transfer of the gamma-phosphoryl group from 

ATP to aminoglycoside antimicrobials, inactivating them [72]. Theoretically this protein has a MW of 

30,474 Da and a pI value of 4.7. In the 2-DE gel, the two corresponding spots have a MW similar to  

the theoretical value, however spot 142 is slightly more basic than spot 143 (Figure 1). Single proteins 

separated by 2-DE frequently exhibit multiple spots in the first dimension. These so-called “charge 

trains” can be caused by isoform differences and post-translational modifications (PTMs). Some 

PTMs, such as phosphorylation, deamidation, desulfuration or acylation, can lead to electrical charge 

heterogeneity with minor modifications in molecular weight. Cysteine oxidation has also been reported 

to be responsible for pI basic shifts [15]. Nontheless, “charge trains” can also be considered artifacts 

due to the sample treatment and analytical procedures employed, such as carbamylation in the presence 

of urea or acrylamide adduct formation during electrophoresis [73]. 

The two strains analysed in this study present phenotypic resistance to sulphonamides. The target of 

sulfonamide antimicrobials and the basis for their selective effect on bacteria is dihydropteroate 

synthase (DHPS) in the folic acid pathway [74]. DHPS is a functional homodimer that, in prokaryotes, 

catalyzes the condensation of p-aminobenzoic acid (PABA) in the de novo biosynthesis of folate, an 

essential cofactor in protein and nucleic acid biosynthesis [72]. Higher eukaryotes are able to utilize 

dietary folate, so they do not have DHPS enzymes. Sulfonamides act either by competitively inhibiting 

DHPS by structural similarity with the PABA substrate or by functioning as alternative substrates for 

DHPS, forming pterin adducts that are unable to participate in folate biosynthesis [74]. DHPS was 

identified in both Se20 (spot 154, Figure 1, Table S1) and SL1344 (spot 382, Figure 2, Table S2) 

strains. In enteric Gram-negative bacteria, sulfonamide clinical resistance is plasmid-mediated by 

genes such as sul1 and sul2, which encode alternative drug-resistance variants of DHPS that show high 

insensitivity to sulfonamide drugs but bind normally to the PABA substrate [74]. The DHPS identified 

in this study (AC: S5HED7) is plasmid-encoded and shows a 100% sequence identity with the  

S. Typhimurium SL1344 DHPS type-2 (AC: H8WV44), which is present on the pRSF1010SL1344 

plasmid. The sul2 gene, which encodes the type-2 DHPS, was previously reported in the Se20  

strain [18] and also in the SL1344 strain [75]. 

Several other proteins related to antimicrobial resistance or virulence were identified. The outer 

membrane protein (OmpA) is one of the main surface proteins in Enterobacteriaceae species and has 

essential roles in the maintenance of structural cell integrity, transmembrane ion transport, mammalian 
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cell invasion, bacteriophage binding, and conjugation [76]. OmpA was detected in two different gel 

locations in both strains. The more abundant spots, 6 for Se20 (Figure 1) and 203 for SL1344 (Figure 2), 

were found where expected for proteins with theoretical MW of 37,606 Da and pI of 5.5. The less 

abundant spots, 141 for Se20 (Figure 1) and 386 for SL1344 (Figure 2), had the same pI but a lower 

MW of approximately 30 kDa. However, these results are not unexpected as OmpA is known to run 

anomalously in SDS-PAGE [76]. β-barrel structures of bacterial outer membrane proteins are usually 

very stable and survive the SDS denaturing treatment at room temperature. As a result, native and 

denatured forms of many OMPs migrate at two different apparent molecular weights in SDS-PAGE. 

The OmpA protein was previously reported to migrate at 30 kDa in its native compacted form [77]. 

The porin outer membrane protein C (OmpC) was also identified. Antimicrobials such as ciprofloxacin, 

norfloxacin, cefepime and ceftriaxone strongly interact with OmpC, and so their translocation through this 

channel is facilitated [78]. The ion channel protein Tsx, which is also likely to play a role in antimicrobial 

resistance [59], was also identified. TolB, a periplasmic protein associated with the outer-membrane protein 

Pal, was detected. TolB belongs to the Tol-Pal system that is well conserved among Gram-negative 

bacteria and plays several roles, including lipopolysaccharide O-antigen surface expression, outer 

membrane stability, uptake of filamentous phage DNA, resistance to detergents and virulence [79]. 

The majority of the proteins identified in this study are involved in oxidation-reduction processes 

(Figure 3). One of the proteins identified in this class was the alkyl hydroperoxide reductase subunit C 

(AhpC), also named alkyl hydroperoxide reductase protein C22 (spot 148). In bacteria, this enzyme is 

responsible for hydrogen peroxide removal, a response to oxidative stress. The peroxide-reducing 

activities of AhpC help to protect pathogenic bacteria from the host immune response [80]; therefore 

the identification of this protein in the Se20 strain is in accordance with its host-adapted phenotype. 

The AhpC protein has recently been considered as a possible target for the development of new 

antimicrobial agents [80]. Other stress response proteins were also identified, namely the heat shock 

chaperone proteins DnaK, DnaJ, HtpG, HslU, HtrA, GroL, the protein disaggregation chaperone and 

the universal stress protein E (UspE). Another heat shock protein identified was the Lon protease 

(HAMAP-Rule MF_01973), which is required for cellular homeostasis and for survival from DNA 

damage and developmental changes induced by stress. 

Bactericidal antimicrobials can induce cell death by stimulating the production of reactive oxygen 

species, principally O2
−, which induces oxidative damage [81]. Superoxide dismutases are responsible 

for the destruction of these superoxide anion radicals. In addition to their detoxifying function, 

bacterial superoxide dismutases have also been shown to be important virulence factors [82].  

In S. Typhimurium, SodA and SodB are cytoplasmic superoxide dismutases that require manganese 

and iron respectively as cofactors [83]. Some studies show that the expression of superoxide dismutase 

enzymes increases in response to antimicrobial stress [81]. Here, both cytoplasmic superoxide 

dismutases, SodA (AC: P43019) and SodB (AC: P0A2F5), were identified. 

Another important virulence factor that shows significant expression in the Se20 clinical strain is 

flagellin, identified in spots 24 and 98. A tight regulation of flagella expression is essential for 

Salmonella when interacting with the host. Flagella-mediated virulence can be activated in the early 

stage of infection to increase invasiveness and can after be deactivated in order to minimize flagellin 

recognition by the host innate immune system and therefore prevent flagella-associated vulnerabilities. 

More than a motility associated virulence factor, flagella have a role in biofilm formation, are essential 
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for in vivo multiplication, confer an advantage in the early stage of infection allowing rapid invasion of 

host cells, and also activate the host immune system while inactivating epithelial cell apoptosis [84]. 

Individual Salmonella serotypes usually alternate between the production of two antigenic forms of 

flagella, phase I and phase II, each specified by separate structural genes, fliC and fljB. Our results 

show that although the phase II flagellin seems to be higly expressed in the Se20 clinical strain and 

absent from SL1344, the phase I flagellin middle domain variant C12 was identified in both strains 

(spot 100 and spot 204), and shows a considerable higer expression in the SL1344 reference strain. 

An additional protein identified in the clinical strain that may contribute to the pathogenic phenotype of 

DT104 is the ethanolamine ammonia-lyase (spot 99). Ethanolamine can be readily derived from cell 

membranes and therefore is available in the large intestine due to enterocyte turnover. Some bacteria, 

including Salmonella, are able to use ethanolamine as a source of carbon and/or nitrogen in a process that 

involves the conversion of ethanolamine into acetaldehyde and ammonia by an ethanolamine ammonia 

lyase [85]. Evidence was provided that in the inflamed intestine, S. Typhimurium has a growth advantage 

due to its ability to respire ethanolamine that is not utilizable by competing bacteria, showing a direct link 

between ethanolamine utilization and bacterial pathogenesis [86]. 

Further, concerning the Se20 clinical strain, the 5'-nucleotidase UDP (uridine diphosphate)-sugar 

hydrolase (UshA), was identified in spot 182, and appears to be absent in the reference strain.  

In Escherichia coli, UshA has an important function in nucleotide salvage. However, UshA can also 

function as a phosphate starvation-induced 5'-nucleotidase, being required for growth when 

nucleotides are provided as the only source of phosphate [87]. This condition is likely to be significant 

for bacterial growth in the wild [87], which may play a role in the worldwide dissemination on  

this strain. 

The majority of proteins identified exclusively in SL1344 also reflect the virulence characteristics 

of this strain. The proteins arginine deiminase (ADI), ornithine carbamoyltransferase and carbamate 

kinase, constitute the ADI system that, besides its metabolic functions, has also been associated with 

virulence in some pathogens. These three proteins were identified in the high intensity spots 205, 215 

and 227, respectively. It was previously established that the ADI pathway contributes to Salmonella 

pathogenesis and that arginine deiminase activity has an active role in the successful infection of 

mammalian hosts by S. Typhimurium [88]. 

Another high intensity spot was identified as the fumarate reductase iron-sulfur subunit (spot 225). 

A recent study provided evidence that fumarate reductase is associated with the bacterial flagellar 

switch complex, which determines the direction of flagellar rotation and is essential for chemotaxis. 

Fumarate influences the interaction of fumarate reductase with the FliG switch thus affecting flagellar 

assembly and rotation [89]. 

The study of specific proteins participating in de novo purine synthesis have shown that the absence 

of key enzymes in the pathway, namely the inosine 5'-monophosphate dehydrogenase GuaB, can 

severely attenuate growth rates and directly affect virulence in S. Typhimurium [90]. GuaB was only 

identified in spot 240 of SL1344. 

Exonuclease III (spot 378), is an intermediate in the second step of the base excision repair (BER) 

system of oxidatively damaged DNA. S. Typhimurium suffers an oxidative DNA damage within 

macrophages that is repaired by the BER system. Hence, a functional BER system is required for 

Salmonella intramacrophage survival and contributes to systemic Salmonella infection [91]. 
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The NADH dehydrogenase I coded by the nuoG gene (spot 259) is induced under microaerophilic 

and stationary-phase growth conditions. Mutations in nuo genes affect several mechanisms of 

microbial physiology and biochemistry which have direct consequences in Salmonella virulence [92]. 

Hydrogenase, identified in spot 332, has also been described to be essential to virulence in  

S. Typhimurium. The usage of respiratory hydrogen as a critical growth substrate for energy 

production allows colonization of the animal host and subsequent virulence during infection. 

Therefore, hydrogenases can represent potential therapeutic targets to combat Salmonella infections [93]. 

The phosphoglucomutase enzyme (spot 344) is important in the virulence of numerous pathogens 

and was recently reported to be required by S. Typhimurium for O-antigen production, resistance to 

antimicrobial peptides and in vivo fitness [94]. Oligopeptidase A, which is involved in degradation of 

signal peptides after they are released from precursor forms of secreted proteins, is also a virulence 

factor and heat shock protein that was identified only in the reference strain (spot 346) [95]. 

The effector SipA protein identified in SL1344 spot 406 is secreted by the centisome 63 type III 

secretion system encoded by Salmonella pathogenicity island 1 and is known to be a key factor in the 

invasion of epithelial cells by S. Typhimurium [96]. 

Finally, the glycerol-3-phosphate dehydrogenase GlpD was identified in spots 237, 238 and 287 of 

the SL1344 strain. In a recent study in E. coli, GlpD overexpression resulted in high persisters, i.e., in a 

bacterial subpopulation capable of surviving antimicrobial exposure or other lethal treatments [97]. 

Effective therapies to treat resistant bacteria are urgently needed. We must understand the 

mechanisms underlying antimicrobial drug resistance in more detail, as no single bacterial strain can 

truly represent its species [7]. In this proteomic analysis we provide a physiological map and an 

overview of global protein expression of Salmonella Typhimurium Se20 (phage type DT104B) and 

SL1344 strains under normal growth conditions [14]. 

3. Experimental Section  

3.1. Bacterial Strains and Growth Conditions 

Two strains of S. Typhimurium, Se20 [18] and SL1344 [19], were included in this study. Se20 

(phage type DT104B) is a previously characterized strain that was recovered from a faecal sample of 

an elderly patient who was admitted to a Spanish hospital with acute gastroenteritis. The patient  

was treated for 7 days with ciprofloxacin, and in vivo selection of quinolone resistance was observed  

post-treatment [18]. Frozen cell stocks of S. Typhimurium Se20 and SL1344 were streaked onto LB 

(Luria-Bertani) agar (Miller, Scharlau Chemie, S.A. Barcelona, Spain) plates and grown overnight at  

37 °C. Pre-cultures were prepared by inoculation of 10 mL of LB broth (Miller, Scharlau Chemie, 

S.A.) with single colonies of each strain with further overnight incubation at 37 °C. Pre-cultures were 

diluted to an optical density at 600 nm (OD600) of 0.02 in a final volume of 10 mL of LB broth, and 

incubated at 37 °C for 5 h. 

3.2. Protein Extraction 

Cultures were harvested in the late exponential phase (OD600 of 0.5) by centrifugation at 10,000× g 

for 3 min at 4 °C and washed by centrifugation with 4 mL of phosphate-buffered saline (PBS). 
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Bacterial cell pellets were suspended in 0.2 mL of solubilization buffer (10% (w/v) SDS and 12% (w/v) 

Tris) and lysed by sonication (4 × 10 s, 20 kHz, 100 W) at 4 °C. Cell debris were removed by 

centrifugation at 14,000× g for 30 min at 4 °C and proteins were further precipitated with cold 

trichloroacetic acid (TCA) at a final concentration of 20%. The proteins were recovered by 

centrifugation at 15,000× g for 25 min at 4 °C and washed twice by centrifugation in 0.3 mL of cold 

acetone for 10 min. Protein pellets were left to air-dry at room temperature. Proteins were extracted 

from three independent cultures andquantified by the Bradford method [98]. 

3.3. Two-Dimensional Gel Electrophoresis 

Two-dimensional gel electrophoresis (2-DE) was performed according to the principles  

of O’Farrell [99] but with Immobiline™ pH Gradient (IPG) technology [100]. For isoelectric focusing, 

precast 13-cm IPG strips with a non-linear gradient from pH 3 to pH 10 (pH 3–10 NL, Amersham 

Biosciences, GE Healthcare, Uppsala, Sweden) were passively rehydrated overnight (16 h)  

at room temperature in a reswelling tray with 250 μL of rehydration buffer (8 M urea, 1%  

CHAPS (3-[(3-cholamidopropyl)-dimethylammonio]-propane-sulfonate), 0.4% DTT (dithiothreitol),  

0.5% carrier ampholyte IPG buffer pH 3–10), covered with Dry-Strip Cover Fluid (Plus One, 

Amersham Biosciences, GE Healthcare). The protein samples (100 μg) were cup-loaded onto the 

rehydrated IPG strips [101] and focused at 500 V for 1 h, 1000 V for 8 h, 8000 V for 3 h and finally 

8000 V incremented to 21,881 Vh in an Ettan™ IPGPhor II™ apparatus (Amersham Biosciences,  

GE Healthcare). Before the second dimension of electrophoresis, the focused IPG strips were 

equilibrated twice, each time for 15 min as follows. For the first equilibration, 1% DTT was added  

to equilibration stock buffer (6 M urea, 30% (w/v) glycerol, 2% (w/v) SDS in 0.05 M Tris–HCl buffer 

pH 8.8) and in the second equilibration, 4% iodoacetamide was added to equilibration stock buffer. 

Bromophenol blue was also added to both solutions. The equilibrated IPG strips were then gently 

rinsed with SDS electrophoresis buffer, blotted to remove excessive buffer, and then applied  

to 12.52% polyacrylamide gels in a Hoefer™ SE 600 Ruby® (Amersham Biosciences, GE Healthcare) 

unit. The Laemmli SDS-PAGE technique was used with some modifications [102]. After the second 

dimension of separation, the 2-DE gels were fixed in a 40% methanol/10% acetic acid solution for  

1 h with agitation, then stained overnight in Coomassie Brilliant Blue G-250 with agitation [103].  

Gels were rinsed twice with 40% methanol for 45 min to remove excess staining and scanned  

on a flatbed scanner (Umax PowerLook 1100, Fremont, CA, USA). At least three 2-DE gels were run 

per protein sample. Images were analyzed using Image Master 5.0 software (Amersham Biosciences, 

GE Healthcare). 

3.4. Tryptic Digestion of In-Gel Proteins 

Coomassie Blue stained protein spots were manually excised and destained with 50% acetonitrile 

(ACN) in 25 mM ammonium bicarbonate. Gel pieces were dehydrated in neat ACN and dried under 

vacuum centrifugation. Enough trypsin solution (0.02 μg/μL), usually 15 μL, was added to cover each 

dried gel piece which was left on ice to rehydrate and to allow enzyme diffusion into the gel matrix. 

After 1 h, any solution not absorbed was removed and 15 μL of 12.5 mM ammonium bicarbonate was 

added, to immerse the gel piece. Proteins were digested overnight at 37 °C. The enzymatic reaction 
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was stopped with 25 μL of 5% formic acid solution and the liquid mixture was collected. Finally,  

25 μL of 50% (v/v) ACN/0.1% (v/v) TFA (trifluoroacetic acid) solution was added to the remaining  

gel pieces to increase the recovery of peptides. The extracted fractions were combined and dried  

in a Speed-Vac. 

3.5. Peptide Mass Fingerprinting 

Prior to protein digest analysis, each tryptic peptide mixture was ressuspended in 10 μL of  

0.3% formic acid. Then, 1 μL of the resuspension was hand-spotted onto a MALDI target plate  

(384-spot ground steel plate), overlaid with 1 μL of α-cyano-4-hydroxycinnamic acid matrix solution 

(7 mg/mL in 0.1% (v/v) TFA/50% (v/v) ACN/8 mM ammonium phosphate) and dried under ambient 

conditions. All mass spectra were generated on a MALDI-TOF/TOF mass spectrometer Ultraflex (Bruker 

Daltonics, Bremen, Germany), operating in positive ion reflectron-mode. Spectra were acquired in the 

m/z range of 600–3500. A total of 500 spectra were acquired for each sample at a laser frequency of  

50 Hz. External calibration was performed with the [M + H]+ monoisotopic peaks of bradykinin 1–7 

(m/z 757.3992), angiotensin II (m/z 1046.5418), angiotensin I (m/z 1296.6848), substance P  

(m/z 1758.9326), ACTH clip 1–17 (m/z 2093.0862), ACTH18–39 (m/z 2465.1983) and somatostatin 

28 (m/z 3147.4710). The MASCOT search engine was used to match the determined peptide masses  

to two customized databases: Salmonella Typhimurium from NCBI RefSeq (National Center for 

Biotechnology Information, U.S. National Library of Medicine, Bethesda, MD, USA), comprising 

231,752 entries (Release 62); and Salmonella spp. from Swiss-Prot (Swiss Institute of Bioinformatics, 

Geneva, Switzerland; The EMBL Outstation—The European Bioinformatics Institute, Cambridge, 

UK), comprising 12,772 entries (Release 2013_11). The Max Planck Institute of Biochemistry, 

Martinsried, common contaminants collection (MPI) was included in both databases in order to avoid 

misleading matches in the presence of contaminant proteins. The search criteria adopted were:  

(i) proteolytic enzyme, trypsin/P; (ii) one missed cleavage allowed; (iii) fixed modifications, 

carbamidomethylation; (iv) variable modifications, methionine oxidation; and (v) a peptide tolerance 

error window up to 50 ppm. A match was considered significant when the probability of it being a 

random event was below the default significance threshold used (p < 0.05), i.e., with a frequency less 

than 5%. 

4. Conclusions 

This study is a preliminary analysis of the proteomes of S. Typhimurium Se20 (phage type DT104) 

and SL1344 strains. It provides a physiological map and an overview of global protein expression  

of these strains under normal growth conditions, presented in the diverse context of Salmonella 

proteomics research. New stresses are continuously introduced to microbiological systems, contributing 

to the evolution of resistance mechanisms and spread of new resistance phenotypes. Discovering the 

physiological processes underlying these phenotypes is an important issue and microbial proteomics 

represents a powerful and accurate instrument for this purpose [11]. Additional work, such as comparative 

proteomics under antimicrobial stress conditions, will be developed to better understand the evolution 

of antimicrobial resistance in this pathogen. 
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