274 research outputs found
Environmental Aspects of the Road Transport Operation
Road transport is one of the main air pollutants. Its share in the total volume of air emissions from stationary and mobile sources in Russia is higher than the share of any industry. In addition to emissions into the atmosphere, each stage of the life cycle of vehicles is accompanied by the formation of a significant amount of waste that is dangerous to the environment. To prevent the negative impact of road transport on the environment, it is necessary to develop a unified integrated approach that would make it possible to use with maximum efficiency various measures to improve environmental friendliness at all stages of the life cycle, not being limited only to emissions into the atmosphere. It is proposed to introduce a comprehensive assessment of the impact of road transport on the environment based on the volume of emissions of pollutants into the atmosphere, soil and wastewater. © 2022 American Institute of Physics Inc.. All rights reserved
The production of a machine designed for the cold radial cyclic forging of solid and tube billets
This paper gives an account of a new project for the design and production of a radial cyclic forging machine. This new design considers the advantages of its predecessor and of modern trends within the engineering industry. The use of this machine could enable the considerable reduction of production wastes. Besides the cold cyclic technology implemented in this machine, it will also allow for the increase in energy efficiency, for the minimum capital investments. © 2014 WIT Press.International Journal of Safety and Security Engineering;International Journal of Sustainable Development and Planning;WIT Transactions on Ecology and the Environmen
Co-existing structures in 105Ru
New positive-parity states, having a band-like structure, were observed in
105Ru. The nucleus was produced in induced fission reaction and the prompt
gamma-rays, emitted from the fragments, were detected by the EUROBALL III
multi-detector array. The partial scheme of excited 105Ru levels is analyzed
within the Triaxial-Rotor-plus-Particle approach
Global Monopole in General Relativity
We consider the gravitational properties of a global monopole on the basis of
the simplest Higgs scalar triplet model in general relativity. We begin with
establishing some common features of hedgehog-type solutions with a regular
center, independent of the choice of the symmetry-breaking potential. There are
six types of qualitative behavior of the solutions; we show, in particular,
that the metric can contain at most one simple horizon. For the standard
Mexican hat potential, the previously known properties of the solutions are
confirmed and some new results are obtained. Thus, we show analytically that
solutions with monotonically growing Higgs field and finite energy in the
static region exist only in the interval , being the
squared energy of spontaneous symmetry breaking in Planck units. The
cosmological properties of these globally regular solutions apparently favor
the idea that the standard Big Bang might be replaced with a nonsingular static
core and a horizon appearing as a result of some symmetry-breaking phase
transition on the Planck energy scale. In addition to the monotonic solutions,
we present and analyze a sequence of families of new solutions with oscillating
Higgs field. These families are parametrized by , the number of knots of the
Higgs field, and exist for ; all such
solutions possess a horizon and a singularity beyond it.Comment: 14 pages, 8 figure
Core-coupled states and split proton-neutron quasi-particle multiplets in 122-126Ag
Neutron-rich silver isotopes were populated in the fragmentation of a 136Xe
beam and the relativistic fission of 238U. The fragments were mass analyzed
with the GSI Fragment separator and subsequently implanted into a passive
stopper. Isomeric transitions were detected by 105 HPGe detectors. Eight
isomeric states were observed in 122-126Ag nuclei. The level schemes of
122,123,125Ag were revised and extended with isomeric transitions being
observed for the first time. The excited states in the odd-mass silver isotopes
are interpreted as core-coupled states. The isomeric states in the even-mass
silver isotopes are discussed in the framework of the proton-neutron split
multiplets. The results of shell-model calculations, performed for the most
neutron-rich silver nuclei are compared to the experimental data
Clarifying the structure of low-lying states in Br-72
The spins and parities of low-lying states in 72Br populated in the beta decay of 72Kr have been studied via conversion electron spectroscopy. The measurements were carried out at ISOLDE using a miniorange spectrometer with Si(Li) and HPGe detectors for electrons and gamma ray detection. Results of the conversion coefficients corresponding to transitions deexciting 12 levels in 72Br are reported. The multipolarities of the transitions are deduced and the spins and parities of the levels involved are discussed. From the multipolarities of the most intense transitions to the ground state, the spin and parity of the 72Br ground state have been definitely established as 1+. The spin of the 101.2-keV isomeric state is determined to be 3-. The level scheme is compared with mean-field and shell-model calculations and oblate deformation for the 72Br ground state is deduced. No E0 transitions have been found in 72Br. E0 transitions in the neighboring isobaric nuclei, 72Se and 72Ge, have also been studied
In-beam spectroscopic studies of S nucleus
The structure of the S nucleus has been studied at GANIL through the
one proton knock-out reaction from a Cl secondary beam at 42
AMeV. The rays following the de-excitation of S were
detected in flight using the 70 BaF detectors of the Ch\^{a}teau de
Cristal array. An exhaustive -coincidence analysis allowed an
unambiguous construction of the level scheme up to an excitation energy of 3301
keV. The existence of the spherical 2 state is confirmed and three new
-ray transitions connecting the prolate deformed 2 level were
observed. Comparison of the experimental results to shell model calculations
further supports a prolate and spherical shape coexistence with a large mixing
of states built on the ground state band in S.Comment: 6 pages, 5 figures, accepted for publication in Physical Review
Fast-timing measurements in neutron-rich odd-mass zirconium isotopes using LaBr3:Ce detectors coupled with Gammasphere
A fast-timing experiment was performed at the Argonne National Laboratory to measure the lifetimes of the lowest lying states of nuclei belonging to the deformed regions around mass number A 110 and A 150. These regions were populated via spontaneous fission of 252 Cf and the gamma radiation following the decay of excited states in the fission fragments was measured using 51 Gammasphere detectors coupled with 25 LaBr 3 :Ce detectors. A brief description of the acquisition system and some preliminary results from the fast-timing analysis of the fission fragment 100Zr are presented. The lifetime value of \u3c4 = 840(65) ps was found for the 2 + state in 100 Zr consistent within one standard deviation of the adopted value with 791 +26 -35 ps. This is associated with a quadrupole deformation parameter of 0.36(2) which is within one standard deviation of the literature value of 0.3556 +82 -57
- …