280 research outputs found

    A Measurement of Newton's Gravitational Constant

    Get PDF
    A precision measurement of the gravitational constant GG has been made using a beam balance. Special attention has been given to determining the calibration, the effect of a possible nonlinearity of the balance and the zero-point variation of the balance. The equipment, the measurements and the analysis are described in detail. The value obtained for G is 6.674252(109)(54) 10^{-11} m3 kg-1 s-2. The relative statistical and systematic uncertainties of this result are 16.3 10^{-6} and 8.1 10^{-6}, respectively.Comment: 26 pages, 20 figures, Accepted for publication by Phys. Rev.

    The 7.68-Mev state in C12

    Get PDF
    Magnetic analysis of the alpha-particle spectrum from N14(d, α)C12 covering the excitation energy range from 4.4 to 9.2 Mev in C12 shows a level at 7.68±0.03 Mev. At Ed=620 kev, θlab=90°, transitions to this state are only 6 percent of those to the level at 4.43 Mev

    Chirality scenario of the spin-glass ordering

    Full text link
    Detailed account is given of the chirality scenario of experimental spin-glass transitions. In this scenario, the spin glass order of weakly anisotropic Heisenberg-like spin-glass magnets including canonical spin glasses are essentially chirality driven. Recent numerical and experimental results are discussed in conjunction with this scenario.Comment: Submitted to J. Phys. Soc. Japan "Special Issue on Frustration

    Cancer-Associated Fibroblasts Neutralize the Anti-tumor Effect of CSF1 Receptor Blockade by Inducing PMN-MDSC Infiltration of Tumors.

    Get PDF
    Tumor-associated macrophages (TAM) contribute to all aspects of tumor progression. Use of CSF1R inhibitors to target TAM is therapeutically appealing, but has had very limited anti-tumor effects. Here, we have identified the mechanism that limited the effect of CSF1R targeted therapy. We demonstrated that carcinoma-associated fibroblasts (CAF) are major sources of chemokines that recruit granulocytes to tumors. CSF1 produced by tumor cells caused HDAC2-mediated downregulation of granulocyte-specific chemokine expression in CAF, which limited migration of these cells to tumors. Treatment with CSF1R inhibitors disrupted this crosstalk and triggered a profound increase in granulocyte recruitment to tumors. Combining CSF1R inhibitor with a CXCR2 antagonist blocked granulocyte infiltration of tumors and showed strong anti-tumor effects

    Application f ionized reactive oxygen species for desinfection of carcasses, table eggs and fertile eggs

    Get PDF
    Primary Audience: Processing Plant Managers, Hatchery Managers SUMMARY We evaluated the effect of ionized reactive oxygen species created using Binary Ionization Technology (BIT) for disinfection of broiler carcasses, table eggs, and treatment of fertile eggs. Previous research has indicated that BIT creates a high concentration of reactive oxygen species (ROS) that lyse bacterial cells on contact. Application of BIT to broiler carcasses that had been intentionally inoculated with 1.58 × 10 6 Salmonella enterica Enteritidis (SE) caused a 1 to 3 log reduction in recoverable SE, depending on the duration of the treatment. Additionally, after inoculation of table eggs with 6.8 × 10 8 cfu of SE, we recovered SE from 95% fewer eggs following enrichment and found significantly fewer (7.77 and 7.41 log reduction) colony-forming units recovered from eggs treated with BIT compared with nontreated control eggs. We also evaluated whether application of the BIT treatment had any effect on hatchability of broiler breeder eggs to determine whether use of this technology could be feasible in a hatchery environment for disinfection of eggs. There were no significant effects of BIT on the hatchability (of total set) of treated eggs as compared with nontreated control eggs; however, there was a slight numerical increase in hatchability, between 5 and 10% in 2 trials. These data suggest that application of BIT technology to carcasses and table eggs could reduce contamination with pathogens and that the application to fertile eggs may not have effects on hatchability of eggs set

    The Chemotactic Defect in Wiskott-Aldrich Syndrome Macrophages Is Due to the Reduced Persistence of Directional Protrusions

    Get PDF
    Wiskott-Aldrich syndrome protein (WASp) is an actin nucleation promoting factor that is required for macrophages to directionally migrate towards various chemoattractants. The chemotaxis defect of WASp-deficient cells and its activation by Cdc42 in vivo suggest that WASp plays a role in directional sensing, however, its precise role in macrophage chemotaxis is still unclear. Using shRNA-mediated downregulation of WASp in the murine monocyte/macrophage cell line RAW/LR5 (shWASp), we found that WASp was responsible for the initial wave of actin polymerization in response to global stimulation with CSF-1, which in Dictyostelium discoideum amoebae and carcinoma cells has been correlated with the ability to migrate towards chemoattractants. Real-time monitoring of shWASp cells, as well as WASp−/− bone marrow-derived macrophages (BMMs), in response to a CSF-1 gradient revealed that the protrusions from WASp-deficient cells were directional, showing intact directional sensing. However, the protrusions from WASp-deficient cells demonstrated reduced persistence compared to their respective control shRNA and wild-type cells. Further examination showed that tyrosine phosphorylation of WASp was required for both the first wave of actin polymerization following global CSF-1 stimulation and proper directional responses towards CSF-1. Importantly, the PI3K, Rac1 and WAVE2 proteins were incorporated normally in CSF-1 – elicited protrusions in the absence of WASp, suggesting that membrane protrusion driven by the WAVE2 complex signaling is intact. Collectively, these results suggest that WASp and its phosphorylation play critical roles in coordinating the actin cytoskeleton rearrangements necessary for the persistence of protrusions required for directional migration of macrophages towards CSF-1

    Total Dose Dependence of Oxide Charge, Interstrip Capacitance and Breakdown Behavior of sLHC Prototype Silicon Strip Detectors and Test Structures of the SMART Collaboration

    Get PDF
    Abstract For the future luminosity upgrade proposed for the Large Hadron Collider (LHC) silicon strip detectors (SSD) and test structures were fabricated on various high-resistivity substrates (p-type MCz and FZ, n-type FZ) within the INFN funded SMART project. They were irradiated with 60 Co to test total dose (TID) effects, in order to study the impact of surface radiation damage on the detector properties (interstrip capacitance and resistance, break-down voltage). Selected results from the pre-rad and post-rad characterization of detectors and test structures are presented, in particular interstrip capacitance, breakdown voltage, flatband voltage and oxide charge. They show saturation at about 150 kRad. Annealing are performed both at room and at elevated temperature

    Harnessing genetic potential of wheat germplasm banks through impact-oriented-prebreeding for future food and nutritional security

    Get PDF
    The value of exotic wheat genetic resources for accelerating grain yield gains is largely unproven and unrealized. We used next-generation sequencing, together with multi-environment phenotyping, to study the contribution of exotic genomes to 984 three-way-cross-derived (exotic/elite1//elite2) pre-breeding lines (PBLs). Genomic characterization of these lines with haplotype map-based and SNP marker approaches revealed exotic specific imprints of 16.1 to 25.1%, which compares to theoretical expectation of 25%. A rare and favorable haplotype (GT) with 0.4% frequency in gene bank identified on chromosome 6D minimized grain yield (GY) loss under heat stress without GY penalty under irrigated conditions. More specifically, the ‘T’ allele of the haplotype GT originated in Aegilops tauschii and was absent in all elite lines used in study. In silico analysis of the SNP showed hits with a candidate gene coding for isoflavone reductase IRL-like protein in Ae. tauschii. Rare haplotypes were also identified on chromosomes 1A, 6A and 2B effective against abiotic/biotic stresses. Results demonstrate positive contributions of exotic germplasm to PBLs derived from crosses of exotics with CIMMYT’s best elite lines. This is a major impact-oriented pre-breeding effort at CIMMYT, resulting in large-scale development of PBLs for deployment in breeding programs addressing food security under climate change scenarios

    Extracellular matrix mimetic peptide scaffolds for neural stem cell culture and differentiation

    Get PDF
    Self-assembled peptide nanofibers form three-dimensional networks that are quite similar to fibrous extracellular matrix (ECM) in their physical structure. By incorporating short peptide sequences derived from ECM proteins, these nanofibers provide bioactive platforms for cell culture studies. This protocol provides information about preparation and characterization of self-assembled peptide nanofiber scaffolds, culturing of neural stem cells (NSCs) on these scaffolds, and analysis of cell behavior. As cell behavior analyses, viability and proliferation of NSCs as well as investigation of differentiation by immunocytochemistry, qRT-PCR, western blot, and morphological analysis on ECM mimetic peptide nanofiber scaffolds are described
    • …
    corecore