107 research outputs found

    Impact of land surface initialization approach on subseasonal forecast skill: A regional analysis in the southern hemisphere

    Get PDF
    The authors use a sophisticated coupled land–atmosphere modeling system for a Southern Hemisphere subdomain centered over southeastern Australia to evaluate differences in simulation skill from two different land surface initialization approaches. The first approach uses equilibrated land surface states obtained from offline simulations of the land surface model, and the second uses land surface states obtained from reanalyses. The authors find that land surface initialization using prior offline simulations contribute to relative gains in subseasonal forecast skill. In particular, relative gains in forecast skill for temperature of 10%–20% within the first 30 days of the forecast can be attributed to the land surface initialization method using offline states. For precipitation there is no distinct preference for the land surface initialization method, with limited gains in forecast skill irrespective of the lead time. The authors evaluated the asymmetry between maximum and minimum temperatures and found that maximum temperatures had the largest gains in relative forecast skill, exceeding 20% in some regions. These results were statistically significant at the 98% confidence level at up to 60 days into the forecast period. For minimum temperature, using reanalyses to initialize the land surface contributed to relative gains in forecast skill, reaching 40% in parts of the domain that were statistically significant at the 98% confidence level. The contrasting impact of the land surface initialization method between maximum and minimum temperature was associated with different soil moisture coupling mechanisms. Therefore, land surface initialization from prior offline simulations does improve predictability for temperature, particularly maximum temperature, but with less obvious improvements for precipitation and minimum temperature over southeastern Australia

    Assessing the potential for crop albedo enhancement in reducing heatwave frequency, duration, and intensity under future climate change

    Get PDF
    Adapting to the impacts of future warming, and in particular the impacts of heatwaves, is an increasingly important challenge. One proposed strategy is land-surface radiation management via crop albedo enhancement. This has been argued to be an effective method of reducing daily hot temperature extremes regionally. However, the influence of crop albedo enhancement on heatwave events, which last three or more days, is yet to be explored and this remains an important knowledge gap. Using a fully coupled earth system model with 10 ensemble members, we show that crop albedo enhancement by up to 0.1 reduces the frequency of heatwave days over Europe and North America by 10 to 20 days; with a larger reduction over Europe under a future climate driven by SSP2-4.5. The average temperature anomaly during heatwaves (the magnitude of the event), is reduced by 0.8 °C to 1.2 °C where the albedo was enhanced, but reductions in mean heatwave duration are limited. There was a marked reduction in the mean annual cumulative heatwave intensity across most of Eurasia and North America, ranging from 32 °C to as high as 80 °C in parts of southern Europe. These changes were largely driven by a reduction in net radiation, decreasing the sensible heat flux, which reduces the maximum temperature, and therefore, heatwave frequency and intensity. These changes were largely localised to where the albedo enhancement was applied with no significant changes in atmospheric circulation or precipitation, which presents advantages for implementation. While our albedo perturbation of up to 0.1 is large and represents the likely upper limit of what is possible with more reflective crops, and we assume that more reflective crops are grown everywhere and instantly, these results provide useful guidance to policy makers and farmers on the maximum possible benefits of using more reflective crops in limiting the impacts of heatwaves under future climate

    Representation of climate extreme indices in the ACCESS1.3b coupled atmosphere–land surface model

    Get PDF
    Climate extremes, such as heat waves and heavy precipitation events, have large impacts on ecosystems and societies. Climate models provide useful tools for studying underlying processes and amplifying effects associated with extremes. The Australian Community Climate and Earth System Simulator (ACCESS) has recently been coupled to the Community Atmosphere Biosphere Land Exchange (CABLE) model. We examine how this model represents climate extremes derived by the Expert Team on Climate Change Detection and Indices (ETCCDI) and compare them to observational data sets using the AMIP framework. We find that the patterns of extreme indices are generally well represented. Indices based on percentiles are particularly well represented and capture the trends over the last 60 years shown by the observations remarkably well. The diurnal temperature range is underestimated, minimum temperatures (TMIN) during nights are generally too warm and daily maximum temperatures (TMAX) too low in the model. The number of consecutive wet days is overestimated, while consecutive dry days are underestimated. The maximum consecutive 1-day precipitation amount is underestimated on the global scale. Biases in TMIN correlate well with biases in incoming longwave radiation, suggesting a relationship with biases in cloud cover. Biases in TMAX depend on biases in net shortwave radiation as well as evapotranspiration. The regions and season where the bias in evapotranspiration plays a role for the TMAX bias correspond to regions and seasons where soil moisture availability is limited. Our analysis provides the foundation for future experiments that will examine how land-surface processes contribute to these systematic biases in the ACCESS modelling system

    Electronic structure of Li2 RuO3 studied by LDA and LDA+DMFT calculations and soft x-ray spectroscopy

    Get PDF
    The electronic structure of Li2RuO3 was investigated using x-ray emission and absorption spectroscopy and by theoretical calculations employing two approaches: the local density approximation (LDA) and a combination of LDA with the cluster extension of dynamical mean-field theory (LDA+DMFT). The evolution of the spectral properties with the strength of electronic correlations is analyzed. We show that for moderate values of on-site Coulomb repulsion U and intra-atomic Hund's rule exchange JH,Li2RuO3 is in an orbital-selective strongly correlated state in the sense that a part of the t2g manifold (i.e., xz/yz) behaves as local atomic orbitals susceptible to Hubbard correlations, while the remaining (xy) orbitals must be described as bond-centered molecular orbitals. Both theoretical approaches succeed in explaining the x-ray data, and a comparison of the theoretical and experimental spectra provides a reasonable estimate of the possible correlation strength (U) and Hund's coupling (JH) in Li2RuO3. © 2015 American Physical Society1771sciescopu

    An oncogenic role for sphingosine kinase 2

    Get PDF
    While both human sphingosine kinases (SK1 and SK2) catalyze the generation of the pleiotropic signaling lipid sphingosine 1-phosphate, these enzymes appear to be functionally distinct. SK1 has well described roles in promoting cell survival, proliferation and neoplastic transformation. The roles of SK2, and its contribution to cancer, however, are much less clear. Some studies have suggested an antiproliferative/ pro-apoptotic function for SK2, while others indicate it has a prosurvival role and its inhibition can have anti-cancer effects. Our analysis of gene expression data revealed that SK2 is upregulated in many human cancers, but only to a small extent (up to 2.5-fold over normal tissue). Based on these findings, we examined the effect of different levels of cellular SK2 and showed that high-level overexpression reduced cell proliferation and survival, and increased cellular ceramide levels. In contrast, however, low-level SK2 overexpression promoted cell survival and proliferation, and induced neoplastic transformation in vivo. These findings coincided with decreased nuclear localization and increased plasma membrane localization of SK2, as well as increases in extracellular S1P formation. Hence, we have shown for the first time that SK2 can have a direct role in promoting oncogenesis, supporting the use of SK2-specific inhibitors as anti-cancer agents.Heidi A. Neubauer, Duyen H. Pham, Julia R. Zebol, Paul A.B. Moretti, Amanda L. Peterson, Tamara M. Leclercq, Huasheng Chan, Jason A. Powell, Melissa R. Pitman, Michael S. Samuel, Claudine S. Bonder, Darren J. Creek, Briony L. Gliddon and Stuart M. Pitso

    Integrated global assessment of the natural forest carbon potential

    Get PDF
    Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2,3,4,5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151–363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets

    Search for single vector-like B quark production and decay via B → bH(b¯b) in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search is presented for single production of a vector-like B quark decaying into a Standard Model b-quark and a Standard Model Higgs boson, which decays into a b¯b pair. The search is carried out in 139 fb−1 of √s = 13 TeV proton-proton collision data collected by the ATLAS detector at the LHC between 2015 and 2018. No significant deviation from the Standard Model background prediction is observed, and mass-dependent exclusion limits at the 95% confidence level are set on the resonance production cross-section in several theoretical scenarios determined by the couplings cW, cZ and cH between the B quark and the Standard Model W, Z and Higgs bosons, respectively. For a vector-like B occurring as an isospin singlet, the search excludes values of cW greater than 0.45 for a B resonance mass (mB) between 1.0 and 1.2 TeV. For 1.2 TeV < mB < 2.0 TeV, cW values larger than 0.50–0.65 are excluded. If the B occurs as part of a (B, Y) doublet, the smallest excluded cZ coupling values range between 0.3 and 0.5 across the investigated resonance mass range 1.0 TeV < mB < 2.0 TeV

    Search for resonances decaying into photon pairs in 139 fb−1 of pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    Searches for new resonances in the diphoton final state, with spin 0 as predicted by theories with an extended Higgs sector and with spin 2 using a warped extra-dimension benchmark model, are presented using 139 fb−1 of √s = 13 TeV pp collision data collected by the ATLAS experiment at the LHC. No significant deviation from the Standard Model is observed and upper limits are placed on the production cross-section times branching ratio to two photons as a function of the resonance mass

    Search for heavy resonances decaying into a Z or W boson and a Higgs boson in final states with leptons and b-jets in 139 fb−1 of pp collisions at s√ = 13 TeV with the ATLAS detector

    Get PDF
    This article presents a search for new resonances decaying into a Z or W boson and a 125 GeV Higgs boson h, and it targets the ÎœÎœÂŻÂŻÂŻbbÂŻÂŻ, ℓ+ℓ−bbÂŻÂŻ, or ℓ±ΜbbÂŻÂŻ final states, where ℓ = e or ÎŒ, in proton-proton collisions at s√ = 13 TeV. The data used correspond to a total integrated luminosity of 139 fb−1 collected by the ATLAS detector during Run 2 of the LHC at CERN. The search is conducted by examining the reconstructed invariant or transverse mass distributions of Zh or Wh candidates for evidence of a localised excess in the mass range from 220 GeV to 5 TeV. No significant excess is observed and 95% confidence-level upper limits between 1.3 pb and 0.3 fb are placed on the production cross section times branching fraction of neutral and charged spin-1 resonances and CP-odd scalar bosons. These limits are converted into constraints on the parameter space of the Heavy Vector Triplet model and the two-Higgs-doublet model
    • 

    corecore