302 research outputs found

    A Robotic arm for optical and gamma radwaste inspection

    Get PDF
    We propose Radibot, a simple and cheap robotic arm for remote inspection, which interacts with the radwaste environment by means of a scintillation gamma detector and a video camera representing its light (< 1 kg) payload. It moves vertically thanks to a crane, while the other three degrees of freedom are obtained by means of revolute joints. A dedicated algorithm allows to automatically choose the best kinematics in order to reach a graphically selected position, while still allowing to fully drive the arm by means of a standard videogame joypad

    Updating the mediterranean diet pyramid towards sustainability: focus on environmental concerns

    Get PDF
    Background: Nowadays the food production, supply and consumption chain represent a major cause of ecological pressure on the natural environment, and diet links worldwide human health with environmental sustainability. Food policy, dietary guidelines and food security strategies need to evolve from the limited historical approach, mainly focused on nutrients and health, to a new one considering the environmental, socio-economic and cultural impact—and thus the sustainability—of diets. Objective: To present an updated version of the Mediterranean Diet Pyramid (MDP) to reflect multiple environmental concerns. Methods: We performed a revision and restructuring of the MDP to incorporate more recent findings on the sustainability and environmental impact of the Mediterranean Diet pattern, as well as its associations with nutrition and health. For each level of the MDP we provided a third dimension featuring the corresponding environmental aspects related to it. Conclusions: The new environmental dimension of the MDP enhances food intake recommendations addressing both health and environmental issues. Compared to the previous 2011 version, it emphasizes more strongly a lower consumption of red meat and bovine dairy products, and a higher consumption of legumes and locally grown eco-friendly plant foods as much as possible

    High-accuracy determination of the neutron flux in the new experimental area n_TOF-EAR2 at CERN

    Get PDF
    A new high flux experimental area has recently become operational at the n_TOF facility at CERN. This new measuring station, n_TOF-EAR2, is placed at the end of a vertical beam line at a distance of approximately 20m from the spallation target. The characterization of the neutron beam, in terms of flux, spatial profile and resolution function, is of crucial importance for the feasibility study and data analysis of all measurements to be performed in the new area. In this paper, the measurement of the neutron flux, performed with different solid-state and gaseous detection systems, and using three neutron-converting reactions considered standard in different energy regions is reported. The results of the various measurements have been combined, yielding an evaluated neutron energy distribution in a wide energy range, from 2meV to 100MeV, with an accuracy ranging from 2%, at low energy, to 6% in the high-energy region. In addition, an absolute normalization of the n_TOF-EAR2 neutron flux has been obtained by means of an activation measurement performed with 197Au foils in the beam.Peer reviewe

    Virgin almond oil: Extraction methods and composition

    Get PDF
    In this paper the extraction methods of virgin almond oil and its chemical composition are reviewed. The most common methods for obtaining oil are solvent extraction, extraction with supercritical fluids (CO<sub>2</sub>) and pressure systems (hydraulic and screw presses). The best industrial performance, but also the worst oil quality is achieved by using solvents. Oils obtained by this method cannot be considered virgin oils as they are obtained by chemical treatments. Supercritical fluid extraction results in higher quality oils but at a very high price. Extraction by pressing becomes the best option to achieve high quality oils at an affordable price. With regards chemical composition, almond oil is characterized by its low content in saturated fatty acids and the predominance of monounsaturated, especially oleic acid. Furthermore, almond oil contains antioxidants and fat-soluble bioactive compounds that make it an oil with interesting nutritional and cosmetic properties.<br><br>En este trabajo se revisan los métodos de extracción del aceite de almendra virgen y su composición química. Los métodos más habituales para la obtención del aceite son la extracción con disolventes, la extracción con fluidos supercríticos (CO<sub>2</sub>) y los sistemas de presión (prensas hidráulica y de tornillo). El mayor rendimiento industrial, pero también la peor calidad de los aceites, se consigue mediante el uso de disolventes. Además, los aceites obtenidos por este método no se pueden considerar vírgenes, pues se obtienen por medio de tratamientos químicos. La extracción con fluidos supercríticos da lugar a aceites de mayor calidad pero a un precio muy elevado. La extracción mediante prensado se convierte en la mejor opción de extracción, al conseguir aceites de alta calidad a un precio asequible. En cuanto a su composición química, el aceite de almendra se caracteriza por su bajo contenido en ácidos grasos saturados y el predominio de los monoinsaturados, en especial en ácido oleico. Además, el aceite de almendra contiene compuestos bioactivos liposolubles y antioxidantes que lo convierten en un aceite con interesantes propiedades nutricionales y cosméticas

    Virus-Free CRISPR CAR T cells induce solid tumor regression

    Get PDF
    Chimeric antigen receptor (CAR) T cell therapy has shown promising efficacy in treating hematologic malignancies and has led to the FDA-approval of three CAR T cell products. However, there has been little success in treating solid tumors, as clinical trials to date have yielded little to no responses and no improvement in survival. Current methods of CAR T cell production typically involve the use of viral vectors which can give rise to complications such as insertional mutagenesis, leading to gene silencing or oncogene activation. In addition, GMP-grade viral vector manufacturing can be expensive with lengthy wait times for new batches. Here we have developed a virus-free strategy in primary T cells that has eliminated the use of viral vectors through the use of CRISPR-Cas9 to precisely edit the chimeric antigen receptor into the TRAC gene1. Our method of virus free production begins through the generation of a double stranded DNA (dsDNA) template produced by polymerase chain reaction (PCR). This template is then combined with a SpCas9-single guide RNA to create a ribonucleoprotein (RNP) complex. Isolated human primary T cells from adult healthy donors are then nucleofected with the RNP and dsDNA template on day 2 of ex vivo expansion. Flow cytometry is then utilized to immunophenotype the cell product and analyze the percent of efficiency of CAR gene transfer. Within the cell product, the editing efficiencies are \u3e95% TCR knockout and 35% CAR+. Transcriptional profiling indicates that the virus-free CART cells have a favorable memory-like phenotype. In addition to our in vitro work, in vivo mice studies with anti-GD2 CART products demonstrate regression of GD2+ solid tumors upon virus-free CART treatment, showing similar potency and survival to viral-produced CAR T cells. The production of virus-free CAR T cells has high potential to enable the rapid and flexible manufacturing of highly defined and highly potent CAR T cell products for the treatment of solid tumors. 1 Mueller, K. et al. CRISPR-mediated insertion of a chimeric antigen receptor produces nonviral T cell products capable of inducing solid tumor regression. bioRxiv preprint doi: https://doi.org/10.1101/2021.08.06.455489 (2021)

    Virus-Free CRISPR CAR T cells induce solid tumor regression

    Get PDF
    Chimeric antigen receptor (CAR) T cell therapy has shown promising efficacy in treating hematologic malignancies and has led to the FDA-approval of three CAR T cell products. However, there has been little success in treating solid tumors, as clinical trials to date have yielded little to no responses and no improvement in survival. Current methods of CAR T cell production typically involve the use of viral vectors which can give rise to complications such as insertional mutagenesis, leading to gene silencing or oncogene activation. In addition, GMP-grade viral vector manufacturing can be expensive with lengthy wait times for new batches. Here we have developed a virus-free strategy in primary T cells that has eliminated the use of viral vectors through the use of CRISPR-Cas9 to precisely edit the chimeric antigen receptor into the TRAC gene1. Our method of virus free production begins through the generation of a double stranded DNA (dsDNA) template produced by polymerase chain reaction (PCR). This template is then combined with a SpCas9-single guide RNA to create a ribonucleoprotein (RNP) complex. Isolated human primary T cells from adult healthy donors are then nucleofected with the RNP and dsDNA template on day 2 of ex vivo expansion. Flow cytometry is then utilized to immunophenotype the cell product and analyze the percent of efficiency of CAR gene transfer. Within the cell product, the editing efficiencies are \u3e95% TCR knockout and 35% CAR+. Transcriptional profiling indicates that the virus-free CART cells have a favorable memory-like phenotype. In addition to our in vitro work, in vivo mice studies with anti-GD2 CART products demonstrate regression of GD2+ solid tumors upon virus-free CART treatment, showing similar potency and survival to viral-produced CAR T cells. The production of virus-free CAR T cells has high potential to enable the rapid and flexible manufacturing of highly defined and highly potent CAR T cell products for the treatment of solid tumors. 1 Mueller, K. et al. CRISPR-mediated insertion of a chimeric antigen receptor produces nonviral T cell products capable of inducing solid tumor regression. bioRxiv preprint doi: https://doi.org/10.1101/2021.08.06.455489 (2021)

    The effect of seasoning with herbs on the nutritional, safety and sensory properties of reduced-sodium fermented Cobrançosa cv. table olives

    Get PDF
    This study aimed at evaluating the effectiveness of seasoning Cobrancosa table olives in a brine with aromatic ingredients, in order to mask the bitter taste given by KCl when added to reduced-sodium fermentation brines. Olives were fermented in two different salt combinations: Brine A, containing 8% NaCl and, Brine B, a reduced-sodium brine, containing 4% NaCl + 4% KCl. After the fermentation the olives were immersed in seasoning brines with NaCl (2%) and the aromatic herbs (thyme, oregano and calamintha), garlic and lemon. At the end of the fermentation and two weeks after seasoning, the physicochemical, nutritional, organoleptic, and microbiological parameters, were determined. The olives fermented in the reduced-sodium brines had half the sodium concentration, higher potassium and calcium content, a lower caloric level, but were considered, by a sensorial panel, more bitter than olives fermented in NaCl brine. Seasoned table olives, previously fermented in Brine A and Brine B, had no significant differences in the amounts of protein (1.23% or 1.11%), carbohydrates (1.0% or 0.66%), fat (20.0% or 20.5%) and dietary fiber (3.4% or 3.6%). Regarding mineral contents, the sodium-reduced fermented olives, presented one third of sodium, seven times more potassium and three times more calcium than the traditional olives fermented in 8% NaCl. Additionally, according to the panelists' evaluation, seasoning the olives fermented in 4% NaCl + 4% KCl, resulted in a decrease in bitterness and an improvement in the overall evaluation and flavor. Escherichia coli and Salmonella were not found in the olives produced.info:eu-repo/semantics/publishedVersio

    Combination antiretroviral therapy and the risk of myocardial infarction

    Get PDF
    corecore