53 research outputs found

    Contrasting signatures of genomic divergence during sympatric speciation

    Get PDF
    Population genomic analyses of Midas cichlid fishes in young Nicaraguan crater lakes suggest that sympatric speciation is promoted by polygenic architectures. The transition from 'well-marked varieties' of a single species into 'well-defined species'-especially in the absence of geographic barriers to gene flow (sympatric speciation)-has puzzled evolutionary biologists ever since Darwin(1,2). Gene flow counteracts the buildup of genome-wide differentiation, which is a hallmark of speciation and increases the likelihood of the evolution of irreversible reproductive barriers (incompatibilities) that complete the speciation process(3). Theory predicts that the genetic architecture of divergently selected traits can influence whether sympatric speciation occurs(4), but empirical tests of this theory are scant because comprehensive data are difficult to collect and synthesize across species, owing to their unique biologies and evolutionary histories(5). Here, within a young species complex of neotropical cichlid fishes (Amphilophus spp.), we analysed genomic divergence among populations and species. By generating a new genome assembly and re-sequencing 453 genomes, we uncovered the genetic architecture of traits that have been suggested to be important for divergence. Species that differ in monogenic or oligogenic traits that affect ecological performance and/or mate choice show remarkably localized genomic differentiation. By contrast, differentiation among species that have diverged in polygenic traits is genomically widespread and much higher overall, consistent with the evolution of effective and stable genome-wide barriers to gene flow. Thus, we conclude that simple trait architectures are not always as conducive to speciation with gene flow as previously suggested, whereas polygenic architectures can promote rapid and stable speciation in sympatry.Peer reviewe

    The round goby genome provides insights into mechanisms that may facilitate biological invasions

    Get PDF
    Background: The invasive benthic round goby (Neogobius melanostomus) is the most successful temperate invasive fish and has spread in aquatic ecosystems on both sides of the Atlantic. Invasive species constitute powerful in situ experimental systems to study fast adaptation and directional selection on short ecological timescales and present promising case studies to understand factors involved the impressive ability of some species to colonize novel environments. We seize the unique opportunity presented by the round goby invasion to study genomic substrates potentially involved in colonization success. Results We report a highly contiguous long-read-based genome and analyze gene families that we hypothesize to relate to the ability of these fish to deal with novel environments. The analyses provide novel insights from the large evolutionary scale to the small species-specific scale. We describe expansions in specific cytochrome P450 enzymes, a remarkably diverse innate immune system, an ancient duplication in red light vision accompanied by red skin fluorescence, evolutionary patterns of epigenetic regulators, and the presence of osmoregulatory genes that may have contributed to the round goby's capacity to invade cold and salty waters. A recurring theme across all analyzed gene families is gene expansions. Conclusions: The expanded innate immune system of round goby may potentially contribute to its ability to colonize novel areas. Since other gene families also feature copy number expansions in the round goby, and since other Gobiidae also feature fascinating environmental adaptations and are excellent colonizers, further long-read genome approaches across the goby family may reveal whether gene copy number expansions are more generally related to the ability to conquer new habitats in Gobiidae or in fish

    Six reference-quality genomes reveal evolution of bat adaptations

    Get PDF
    Bats possess extraordinary adaptations, including flight, echolocation, extreme longevity and unique immunity. High-quality genomes are crucial for understanding the molecular basis and evolution of these traits. Here we incorporated long-read sequencing and state-of-the-art scaffolding protocols to generate, to our knowledge, the first reference-quality genomes of six bat species (Rhinolophus ferrumequinum, Rousettus aegyptiacus, Phyllostomus discolor, Myotis myotis, Pipistrellus kuhlii and Molossus molossus). We integrated gene projections from our �Tool to infer Orthologs from Genome Alignments� (TOGA) software with de novo and homology gene predictions as well as short- and long-read transcriptomics to generate highly complete gene annotations. To resolve the phylogenetic position of bats within Laurasiatheria, we applied several phylogenetic methods to comprehensive sets of orthologous protein-coding and noncoding regions of the genome, and identified a basal origin for bats within Scrotifera. Our genome-wide screens revealed positive selection on hearing-related genes in the ancestral branch of bats, which is indicative of laryngeal echolocation being an ancestral trait in this clade. We found selection and loss of immunity-related genes (including pro-inflammatory NF-κB regulators) and expansions of anti-viral APOBEC3 genes, which highlights molecular mechanisms that may contribute to the exceptional immunity of bats. Genomic integrations of diverse viruses provide a genomic record of historical tolerance to viral infection in bats. Finally, we found and experimentally validated bat-specific variation in microRNAs, which may regulate bat-specific gene-expression programs. Our reference-quality bat genomes provide the resources required to uncover and validate the genomic basis of adaptations of bats, and stimulate new avenues of research that are directly relevant to human health and disease.s E.W.M. and M.P. were supported by the Max Planck Society and were partially funded by the Federal Ministry of Education and Research (grant 01IS18026C). All data produced in Dresden were funded directly by the Max Planck Society. S.C.V., P.D. and K.L. were funded by a Max Planck Research Group awarded to S.C.V. from the Max Planck Society, and a Human Frontiers Science Program (HFSP) Research grant awarded to S.C.V. (RGP0058/2016). M.H. was funded by the German Research Foundation (HI 1423/3-1) and the Max Planck Society. E.C.T. was funded by a European Research Council Research Grant (ERC2012-StG311000), UCD Wellcome Institutional Strategic Support Fund, financed jointly by University College Dublin and SFI-HRB-Wellcome Biomedical Research Partnership (ref 204844/Z/16/Z) and Irish Research Council Consolidator Laureate Award. G.M.H. was funded by a UCD Ad Astra Fellowship. G.J. and E.C.T. were funded from the Royal Society/Royal Irish Academy cost share programme. L.M.D. was supported by NSF-DEB 1442142 and 1838273, and NSF-DGE 1633299. D.A.R. was supported by NSF-DEB 1838283. E.D.J. and O.F. were funded by the Rockefeller University and the Howard Hughes Medical Institute. We thank Stony Brook Research Computing and Cyberinfrastructure, and the Institute for Advanced Computational Science at Stony Brook University for access to the high-performance SeaWulf computing system (which was made possible by a National Science Foundation grant (no. 1531492)); the Long Read Team of the DRESDEN-concept Genome Center, DFG NGS Competence Center, part of the Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden; S. Kuenzel and his team of the Max Planck Institute of Evolutionary Biology; members of the Vertebrate Genomes Laboratory at The Rockefeller University for their support; L. Wiegrebe, U. Firzlaff and M. Yartsev, who gave us access to captive colonies of Phyllostomus and Rousettus bats and aided with tissue sample collection; and M. Springer, for completing the SVDquartet analyses, and providing phylogenetic input and expertise

    P2X7 in Cancer: From Molecular Mechanisms to Therapeutics

    Get PDF
    P2X7 is a transmembrane receptor expressed in multiple cell types including neurons, dendritic cells, macrophages, monocytes, B and T cells where it can drive a wide range of physiological responses from pain transduction to immune response. Upon activation by its main ligand, extracellular ATP, P2X7 can form a nonselective channel for cations to enter the cell. Prolonged activation of P2X7, via high levels of extracellular ATP over an extended time period can lead to the formation of a macropore, leading to depolarization of the plasma membrane and ultimately to cell death. Thus, dependent on its activation state, P2X7 can either drive cell survival and proliferation, or induce cell death. In cancer, P2X7 has been shown to have a broad range of functions, including playing key roles in the development and spread of tumor cells. It is therefore unsurprising that P2X7 has been reported to be upregulated in several malignancies. Critically, ATP is present at high extracellular concentrations in the tumor microenvironment (TME) compared to levels observed in normal tissues. These high levels of ATP should present a survival challenge for cancer cells, potentially leading to constitutive receptor activation, prolonged macropore formation and ultimately to cell death. Therefore, to deliver the proven advantages for P2X7 in driving tumor survival and metastatic potential, the P2X7 macropore must be tightly controlled while retaining other functions. Studies have shown that commonly expressed P2X7 splice variants, distinct SNPs and post-translational receptor modifications can impair the capacity of P2X7 to open the macropore. These receptor modifications and potentially others may ultimately protect cancer cells from the negative consequences associated with constitutive activation of P2X7. Significantly, the effects of both P2X7 agonists and antagonists in preclinical tumor models of cancer demonstrate the potential for agents modifying P2X7 function, to provide innovative cancer therapies. This review summarizes recent advances in understanding of the structure and functions of P2X7 and how these impact P2X7 roles in cancer progression. We also review potential therapeutic approaches directed against P2X7

    The European Reference Genome Atlas: piloting a decentralised approach to equitable biodiversity genomics.

    Get PDF
    ABSTRACT: A global genome database of all of Earth’s species diversity could be a treasure trove of scientific discoveries. However, regardless of the major advances in genome sequencing technologies, only a tiny fraction of species have genomic information available. To contribute to a more complete planetary genomic database, scientists and institutions across the world have united under the Earth BioGenome Project (EBP), which plans to sequence and assemble high-quality reference genomes for all ∼1.5 million recognized eukaryotic species through a stepwise phased approach. As the initiative transitions into Phase II, where 150,000 species are to be sequenced in just four years, worldwide participation in the project will be fundamental to success. As the European node of the EBP, the European Reference Genome Atlas (ERGA) seeks to implement a new decentralised, accessible, equitable and inclusive model for producing high-quality reference genomes, which will inform EBP as it scales. To embark on this mission, ERGA launched a Pilot Project to establish a network across Europe to develop and test the first infrastructure of its kind for the coordinated and distributed reference genome production on 98 European eukaryotic species from sample providers across 33 European countries. Here we outline the process and challenges faced during the development of a pilot infrastructure for the production of reference genome resources, and explore the effectiveness of this approach in terms of high-quality reference genome production, considering also equity and inclusion. The outcomes and lessons learned during this pilot provide a solid foundation for ERGA while offering key learnings to other transnational and national genomic resource projects.info:eu-repo/semantics/publishedVersio

    Diversity, dynamics and effects of long terminal repeat retrotransposons in the model grass Brachypodium distachyon

    Full text link
    Transposable elements (TEs) are the main reason for the high plasticity of plant genomes, where they occur as communities of diverse evolutionary lineages. Because research has typically focused on single abundant families or summarized TEs at a coarse taxonomic level, our knowledge about how these lineages differ in their effects on genome evolution is still rudimentary. Here we investigate the community composition and dynamics of 32 long terminal repeat retrotransposon (LTR‐RT) families in the 272‐Mb genome of the Mediterranean grass Brachypodium distachyon. We find that much of the recent transpositional activity in the B. distachyon genome is due to centromeric Gypsy families and Copia elements belonging to the Angela lineage. With a half‐life as low as 66 kyr, the latter are the most dynamic part of the genome and an important source of within‐species polymorphisms. Second, GC‐rich Gypsy elements of the Retand lineage are the most abundant TEs in the genome. Their presence explains > 20% of the genome‐wide variation in GC content and is associated with higher methylation levels. Our study shows how individual TE lineages change the genetic and epigenetic constitution of the host beyond simple changes in genome size
    corecore