28 research outputs found
The significance of lipid composition for membrane activity: new concepts and ways of assessing function
In the last decade or so, it has been realised that membranes do not just have a lipid-bilayer structure in which proteins
are embedded or with which they associate. Structures are dynamic and contain areas of heterogeneity which are vital for
their formation. In this review, we discuss some of the ways in which these dynamic and heterogeneous structures have
implications during stress and in relation to certain human diseases. A particular stress is that of temperature which
may instigate adaptation in poikilotherms or appropriate defensive responses during fever in mammals. Recent data
emphasise the role of membranes in sensing temperature changes and in controlling a regulatory loop with chaperone proteins.
This loop seems to need the existence of specific membrane microdomains and also includes association of chaperone
(heat stress) proteins with the membrane. The role of microdomains is then discussed further in relation to various human
pathologies such as cardiovascular disease, cancer and neurodegenerative diseases. The concept of modifying membrane
lipids (lipid therapy) as a means for treating such pathologies is then introduced. Examples are given when such methods
have been shown to have benefit.
In order to study membrane microheterogeneity in detail and to elucidate possible molecular mechanisms that account
for alteration in membrane function, new methods are needed. In the second part of the review, we discuss ultra-sensitive
and ultra-resolution imaging techniques. These include atomic force microscopy, single particle tracking, single particle
tracing and various modern fluorescence methods. Finally, we deal with computing simulation of membrane systems. Such
methods include coarse-grain techniques and Monte Carlo which offer further advances into molecular dynamics. As computational
methods advance they will have more application by revealing the very subtle interactions that take place
between the lipid and protein components of membranes â and which are so essential to their function
A chemical survey of exoplanets with ARIEL
Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planetâs birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25â7.8 ÎŒm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10â100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed â using conservative estimates of mission performance and a full model of all significant noise sources in the measurement â using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL â in line with the stated mission objectives â will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio
Membrane-Lipid Therapy in Operation: The HSP Co-Inducer BGP-15 Activates Stress Signal Transduction Pathways by Remodeling Plasma Membrane Rafts
Aging and pathophysiological conditions are linked to membrane changes which modulate membrane-controlled molecular switches, causing dysregulated heat shock protein (HSP) expression. HSP co-inducer hydroxylamines such as BGP-15 provide advanced therapeutic candidates for many diseases since they preferentially affect stressed cells and are unlikely have major side effects. In the present study in vitro molecular dynamic simulation, experiments with lipid monolayers and in vivo ultrasensitive fluorescence microscopy showed that BGP-15 alters the organization of cholesterol-rich membrane domains. Imaging of nanoscopic long-lived platforms using the raft marker glycosylphosphatidylinositol-anchored monomeric green fluorescent protein diffusing in the live Chinese hamster ovary (CHO) cell plasma membrane demonstrated that BGP-15 prevents the transient structural disintegration of rafts induced by fever-type heat stress. Moreover, BGP-15 was able to remodel cholesterol-enriched lipid platforms reminiscent of those observed earlier following non-lethal heat priming or membrane stress, and were shown to be obligate for the generation and transmission of stress signals. BGP-15 activation of HSP expression in B16-F10 mouse melanoma cells involves the Rac1 signaling cascade in accordance with the previous observation that cholesterol affects the targeting of Rac1 to membranes. Finally, in a human embryonic kidney cell line we demonstrate that BGP-15 is able to inhibit the rapid heat shock factor 1 (HSF1) acetylation monitored during the early phase of heat stress, thereby promoting a prolonged duration of HSF1 binding to heat shock elements. Taken together, our results indicate that BGP-15 has the potential to become a new class of pharmaceuticals for use in âmembrane-lipid therapyâ to combat many various protein-misfolding diseases associated with aging
HADES RV program with HARPS-N at the TNG GJ 3998: An early M-dwarf hosting a system of super-Earths
Context. Many efforts are currently made to detect Earth-like planets around low-mass stars in almost every extra-solar planet search. M dwarfs are considered ideal targets for Doppler radial velocity searches because their low masses and luminosities make low-mass planets orbiting in these stars' habitable zones more easily detectable than those around higher mass stars. Nonetheless, the frequency statistics of low-mass planets hosted by low-mass stars remains poorly constrained. Aims: Our M-dwarf radial velocity monitoring with HARPS-N within the collaboration between the Global architectures of Planetary Systems (GAPS) project, the Institut de CiĂšncies de l'Espai/CSIC-IEEC (ICE) and the Instituto de AstrofĂsica de Canarias (IAC) can provide a major contribution to the widening of the current statistics through the in-depth analysis of accurate radial velocity observations in a narrow range of spectral sub-types (79 stars, between dM0 to dM3). Spectral accuracy will enable us to reach the precision needed to detect small planets with a few Earth masses. Our survey will contribute to the surveys devoted to the search for planets around M-dwarfs, mainly focused on the M-dwarf population of the northern emisphere, for which we will provide an estimate of the planet occurrence. Methods: We present here a long-duration radial velocity monitoring of the M1 dwarf star GJ 3998 with HARPS-N to identify periodic signals in the data. Almost simultaneous photometric observations were carried out within the APACHE and EXORAP programs to characterize the stellar activity and to distinguish those due to activity and to the presence of planetary companions from the periodic signals. We ran a Markov chain Monte Carlo simulation and used a Bayesian model selection to determine the number of planets in this system, to estimate their orbital parameters and minimum mass, and to properly treat the activity noise. Results: The radial velocities have a dispersion in excess of their internal errors due to at least four superimposed signals with periods of 30.7, 13.7, 42.5, and 2.65 days. Our data are well described by a two-planet Keplerian (13.7 d and 2.65 d) and a fit with two sinusoidal functions (stellar activity, 30.7 d and 42.5 d). The analysis of spectral indexes based on Ca II H & K and Hα lines demonstrates that the periods of 30.7 and 42.5 days are due to chromospheric inhomogeneities modulated by stellar rotation and differential rotation. This result is supported by photometry and is consistent with the results on differential rotation of M stars obtained with Kepler. The shorter periods of 13.74 ± 0.02 d and 2.6498 ± 0.0008 d are well explained with the presence of two planets, with masses of at least 6.26_(-0.76)^(+0.79) Mâ and 2.47 ± 0.27 Mâ and distances of 0.089 AU and 0.029 AU from the host, respectively. -- Based on: observations made with the Italian Telescopio Nazionale Galileo (TNG), operated on the island of La Palma by the INAF - FundaciĂłn Galileo Galilei at the Roche de Los Muchachos Observatory of the Instituto de AstrofĂsica de Canarias (IAC); photometric observations made with the APACHE array located at the Astronomical Observatory of the Aosta Valley; photometric observations made with the robotic telescope APT2 (within the EXORAP program) located at Serra La Nave on Mt. Etna. http://www.oact.inaf.it/exoit/EXO-IT/Projects/Entries/2011/12/27_GAPS.html</A
Relativistic Binaries in Globular Clusters
Galactic globular clusters are old, dense star systems typically containing
10\super{4}--10\super{7} stars. As an old population of stars, globular
clusters contain many collapsed and degenerate objects. As a dense population
of stars, globular clusters are the scene of many interesting close dynamical
interactions between stars. These dynamical interactions can alter the
evolution of individual stars and can produce tight binary systems containing
one or two compact objects. In this review, we discuss theoretical models of
globular cluster evolution and binary evolution, techniques for simulating this
evolution that leads to relativistic binaries, and current and possible future
observational evidence for this population. Our discussion of globular cluster
evolution will focus on the processes that boost the production of hard binary
systems and the subsequent interaction of these binaries that can alter the
properties of both bodies and can lead to exotic objects. Direct {\it N}-body
integrations and Fokker--Planck simulations of the evolution of globular
clusters that incorporate tidal interactions and lead to predictions of
relativistic binary populations are also discussed. We discuss the current
observational evidence for cataclysmic variables, millisecond pulsars, and
low-mass X-ray binaries as well as possible future detection of relativistic
binaries with gravitational radiation.Comment: 88 pages, 13 figures. Submitted update of Living Reviews articl
Precise Masses in the WASP-47 System
We present precise radial velocity observations of WASP-47, a star known to
host a hot Jupiter, a distant Jovian companion, and, uniquely, two additional
transiting planets in short-period orbits: a super-Earth in a ~19 hour orbit,
and a Neptune in a ~9 day orbit. We analyze our observations from the HARPS-N
spectrograph along with previously published data to measure the most precise
planet masses yet for this system. When combined with new stellar parameters
and reanalyzed transit photometry, our mass measurements place strong
constraints on the compositions of the two small planets. We find unlike most
other ultra-short-period planets, the inner planet, WASP-47 e, has a mass (6.83
+/- 0.66 Me) and radius (1.810 +/- 0.027 Re) inconsistent with an Earth-like
composition. Instead, WASP-47 e likely has a volatile-rich envelope surrounding
an Earth-like core and mantle. We also perform a dynamical analysis to
constrain the orbital inclination of WASP-47 c, the outer Jovian planet. This
planet likely orbits close to the plane of the inner three planets, suggesting
a quiet dynamical history for the system. Our dynamical constraints also imply
that WASP-47 c is much more likely to transit than a geometric calculation
would suggest. We calculate a transit probability for WASP-47 c of about 10%,
more than an order of magnitude larger than the geometric transit probability
of 0.6%.Comment: 15 pages, 3 figures, 3 tables. Accepted in A
The GAPS Programme with HARPS-N at TNG. XII. Characterization of the planetary system around HD 108874
In order to understand the observed physical and orbital diversity of extrasolar planetary systems, a full investigation of these objects and of their host stars is necessary. Within this field, one of the main purposes of the GAPS observing project with HARPS-N at TNG is to provide a more detailed characterization of already known systems. In this framework we monitored the star, hosting two giant planets, HD 108874, with HARPS-N for three years in order to refine the orbits, to improve the dynamical study and to search for additional low-mass planets in close orbits. We subtracted the radial velocity (RV) signal due to the known outer planets, finding a clear modulation of 40.2 d period. We analysed the correlation between RV residuals and the activity indicators and modelled the magnetic activity with a dedicated code. Our analysis suggests that the 40.2 d periodicity is a signature of the rotation period of the star. A refined orbital solution is provided, revealing that the system is close to a mean motion resonance of about 9:2, in a stable configuration over 1 Gyr. Stable orbits for low-mass planets are limited to regions very close to the star or far from it. Our data exclude super-Earths with Msini âł 5Mâ within 0.4 AU and objects with Msini âł 2Mâ with orbital periods of a few days. Finally we put constraints on the habitable zone of the system, assuming the presence of an exomoon orbiting the inner giant planet. Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the FundaciĂłn Galileo Galilei of the INAF at the Spanish Observatorio del Roque de los Muchachos of the IAC in the frame of the programme Global Architecture of Planetary Systems (GAPS).Table A.1 is also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A90</A
The GAPS programme with HARPS-N at TNG. XVI. Measurement of the Rossiter-McLaughlin effect of transiting planetary systems HAT-P-3, HAT-P-12, HAT-P-22, WASP-39, and WASP-60
Context. The measurement of the orbital obliquity of hot Jupiters with different physical characteristics can provide clues to the mechanisms of migration and orbital evolution of this particular class of giant exoplanets. Aims: We aim to derive the degree of alignment between planetary orbit and stellar spin angular momentum vectors and look for possible links with other orbital and fundamental physical parameters of the star-planet system. We focus on the characterisation of five transiting planetary systems (HAT-P-3, HAT-P-12, HAT-P-22, WASP-39, and WASP-60) and the determination of their sky-projected planet orbital obliquity through the measurement of the Rossiter-McLaughlin effect. Methods: We used HARPS-N high-precision radial velocity measurements, gathered during transit events, to measure the Rossiter-McLaughlin effect in the target systems and determine the sky-projected angle between the planetary orbital plane and stellar equator. The characterisation of stellar atmospheric parameters was performed by exploiting the HARPS-N spectra, using line equivalent width ratios and spectral synthesis methods. Photometric parameters of the five transiting exoplanets were re-analysed through 17 new light curves, obtained with an array of medium-class telescopes, and other light curves from the literature. Survey-time-series photometric data were analysed for determining the rotation periods of the five stars and their spin inclination. Results: From the analysis of the Rossiter-McLaughlin effect we derived a sky-projected obliquity of λ = 21.2° ± 8.7°, λ = -54°-13°+41°, λ = -2.1° ± 3.0°, λ = 0° ± 11°, and λ = -129° ± 17° for HAT-P-3 b, HAT-P-12 b, HAT-P-22 b, WASP-39 b, and WASP-60 b, respectively. The latter value indicates that WASP-60 b is moving on a retrograde orbit. These values represent the first measurements of λ for the five exoplanetary systems under study. The stellar activity of HAT-P-22 indicates a rotation period of 28.7 ± 0.4 days, which allowed us to estimate the true misalignment angle of HAT-P-22 b, Ï = 24° ± 18°. The revision of the physical parameters of the five exoplanetary systems returned values that are fully compatible with those existing in the literature. The exception to this is the WASP-60 system, for which, based on higher quality spectroscopic and photometric data, we found a more massive and younger star and a larger and hotter planet. Tables of the light curve and radial velocity data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/613/A4
Enabling planetary science across light-years. Ariel Definition Study Report
Ariel, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey, was adopted as the fourth medium-class mission in ESA's Cosmic Vision programme to be launched in 2029. During its 4-year mission, Ariel will study what exoplanets are made of, how they formed and how they evolve, by surveying a diverse sample of about 1000 extrasolar planets, simultaneously in visible and infrared wavelengths. It is the first mission dedicated to measuring the chemical composition and thermal structures of hundreds of transiting exoplanets, enabling planetary science far beyond the boundaries of the Solar System. The payload consists of an off-axis Cassegrain telescope (primary mirror 1100 mm x 730 mm ellipse) and two separate instruments (FGS and AIRS) covering simultaneously 0.5-7.8 micron spectral range. The satellite is best placed into an L2 orbit to maximise the thermal stability and the field of regard. The payload module is passively cooled via a series of V-Groove radiators; the detectors for the AIRS are the only items that require active cooling via an active Ne JT cooler. The Ariel payload is developed by a consortium of more than 50 institutes from 16 ESA countries, which include the UK, France, Italy, Belgium, Poland, Spain, Austria, Denmark, Ireland, Portugal, Czech Republic, Hungary, the Netherlands, Sweden, Norway, Estonia, and a NASA contribution
Third-Order Nonlinear Optical Properties of In-Backbone Substituted Oligo(triacetylene) Chromophores
A new approach to tuning the nonlinear optical properties of hybrid oligo(triacetylene) compounds is studied.
The method is based on the insertion of a central heterospacer group between two (E)-hex-3-ene-1,5-diyne moieties. A significant increase in the second hyperpolarizability g is expected if the central spacer fragment is an extended conjugated chromophore. We present a series of molecules with enhanced second hyperpolarizability
caused by the presence of highly conjugated spacer groups, which increase the overall p-electron delocalization.
Some metal complexes obtained from the coordination of these hybrid oligomers to transitionmetal centers have also been investigated and revealed substantial differences in the capacities of the metal centers to act as electronic bridges. Finally, we show that theoretical predictions of the relative differences in the second hyperpolarizabilities of the new spacer compounds are in good agreement with the experimental results