463 research outputs found

    Effect of CO2 enrichment on bacterial metabolism in an Arctic fjord

    Get PDF
    he anthropogenic increase of carbon dioxide (CO2) alters the seawater carbonate chemistry, with a decline of pH and an increase in the partial pressure of CO2 (pCO2). Although bacteria play a major role in carbon cycling, little is known about the impact of rising pCO2 on bacterial carbon metabolism, especially for natural bacterial communities. In this study, we investigated the effect of rising pCO2 on bacterial production (BP), bacterial respiration (BR) and bacterial carbon metabolism during a mesocosm experiment performed in Kongsfjorden (Svalbard) in 2010. Nine mesocosms with pCO2 levels ranging from ca. 180 to 1400 μatm were deployed in the fjord and monitored for 30 days. Generally BP gradually decreased in all mesocosms in an initial phase, showed a large (3.6-fold average) but temporary increase on day 10, and increased slightly after inorganic nutrient addition. Over the wide range of pCO2 investigated, the patterns in BP and growth rate of bulk and free-living communities were generally similar over time. However, BP of the bulk community significantly decreased with increasing pCO2 after nutrient addition (day 14). In addition, increasing pCO2 enhanced the leucine to thymidine (Leu : TdR) ratio at the end of experiment, suggesting that pCO2 may alter the growth balance of bacteria. Stepwise multiple regression analysis suggests that multiple factors, including pCO2, explained the changes of BP, growth rate and Leu : TdR ratio at the end of the experiment. In contrast to BP, no clear trend and effect of changes of pCO2 was observed for BR, bacterial carbon demand and bacterial growth efficiency. Overall, the results suggest that changes in pCO2 potentially influence bacterial production, growth rate and growth balance rather than the conversion of dissolved organic matter into CO2

    Organic groundwater contamination evaluation and prediction

    Get PDF
    Adsorption of two organic compounds, Trichloroethylene (TCE) and Pentachlorophenol (PCP), on several Missouri soils were determined. The soils used were of the Coppock, Parsons, Putnam, Grundy and Lebanon series. TCE concentrations were determined by gas chromatography, while PCP concentrations were measured by radio-assay technique. Batch adsorption experiments were conducted using a soil and various organic compound concentrations. It was found that adsorption data for both TCE and PCP fit a Freundlich relationship. TCE and PCP adsorption on Missouri soils decreased with increasing pH. Organic matter in soil was an important parameter in determining the extent of TCE and PCP adsorption. TCE was poorly adsorbed on the soils tested while; PCP adsorption was more strongly adsorbed. This would indicate that TCE would migrate readily with the groundwater, while PCP migration would be somewhat retarded.Project # G852-05 Agreement # 14-08-000

    My Wardrobe in the Cloud: An International Comparison of Fashion Rental

    Full text link
    In response to the 2008 global financial crisis, a range of disruptive business model innovations emerged. The fashion industry saw the introduction of fashion rental platforms, aimed at appealing to price-conscious consumers still hungry for the latest styles. While these new business models filled a gap in the market and saw, in some cases, profit in the millions, the phenomenon remained rather niche. The recent pandemic, alongside other isomorphic pressures, have put further constraints on these fashion rental businesses and their entrepreneurs, leaving them struggling in the current economic climate. This chapter explores the entrepreneurial motivations behind rental platforms, the different platform models in operation, and the challenges these businesses face in the 21st century, including increased technological developments, environmental sustainability, and external pressures, such as the most recent pandemic, which saw economies shutting down. Empirically, the authors draw upon a novel dataset comprising six international case studies

    GPI-anchor signal sequence influences PrPC sorting, shedding and signalling, and impacts on different pathomechanistic aspects of prion disease in mice

    Get PDF
    The cellular prion protein (PrPC) is a cell surface glycoprotein attached to the membrane by a glycosylphosphatidylinositol (GPI)-anchor and plays a critical role in transmissible, neurodegenerative and fatal prion diseases. Alterations in membrane attachment influence PrPC-associated signaling, and the development of prion disease, yet our knowledge of the role of the GPI-anchor in localization, processing, and function of PrPC in vivo is limited We exchanged the PrPC GPI-anchor signal sequence of for that of Thy-1 (PrPCGPIThy-1) in cells and mice. We show that this modifies the GPI-anchor composition, which then lacks sialic acid, and that PrPCGPIThy-1 is preferentially localized in axons and is less prone to proteolytic shedding when compared to PrPC. Interestingly, after prion infection, mice expressing PrPCGPIThy-1 show a significant delay to terminal disease, a decrease of microglia/astrocyte activation, and altered MAPK signaling when compared to wild-type mice. Our results are the first to demonstrate in vivo, that the GPI-anchor signal sequence plays a fundamental role in the GPI-anchor composition, dictating the subcellular localization of a given protein and, in the case of PrPC, influencing the development of prion disease

    A distributed multiscale computation of a tightly coupled model using the Multiscale Modeling Language

    Get PDF
    AbstractNature is observed at all scales; with multiscale modeling, scientists bring together several scales for a holistic analysis of a phenomenon. The models on these different scales may require significant but also heterogeneous computational resources, creating the need for distributed multiscale computing. A particularly demanding type of multiscale models, tightly coupled, brings with it a number of theoretical and practical issues. In this contribution, a tightly coupled model of in-stent restenosis is first theoretically examined for its multiscale merits using the Multiscale Modeling Language (MML); this is aided by a toolchain consisting of MAPPER Memory (MaMe), the Multiscale Application Designer (MAD), and Gridspace Experiment Workbench. It is implemented and executed with the general Multiscale Coupling Library and Environment (MUSCLE). Finally, it is scheduled amongst heterogeneous infrastructures using the QCG-Broker. This marks the first occasion that a tightly coupled application uses distributed multiscale computing in such a general way

    The {\eta}'-carbon potential at low meson momenta

    Full text link
    The production of η′\eta^\prime mesons in coincidence with forward-going protons has been studied in photon-induced reactions on 12^{12}C and on a liquid hydrogen (LH2_2) target for incoming photon energies of 1.3-2.6 GeV at the electron accelerator ELSA. The η′\eta^\prime mesons have been identified via the η′→π0π0η→6γ\eta^\prime\rightarrow \pi^0 \pi^0\eta \rightarrow 6 \gamma decay registered with the CBELSA/TAPS detector system. Coincident protons have been identified in the MiniTAPS BaF2_2 array at polar angles of 2∘≤θp≤11∘2^{\circ} \le \theta _{p} \le 11^{\circ}. Under these kinematic constraints the η′\eta^\prime mesons are produced with relatively low kinetic energy (≈\approx 150 MeV) since the coincident protons take over most of the momentum of the incident-photon beam. For the C-target this allows the determination of the real part of the η′\eta^\prime-carbon potential at low meson momenta by comparing with collision model calculations of the η′\eta^\prime kinetic energy distribution and excitation function. Fitting the latter data for η′\eta^\prime mesons going backwards in the center-of-mass system yields a potential depth of V = −-(44 ±\pm 16(stat)±\pm15(syst)) MeV, consistent with earlier determinations of the potential depth in inclusive measurements for average η′\eta^\prime momenta of ≈\approx 1.1 GeV/cc. Within the experimental uncertainties, there is no indication of a momentum dependence of the η′\eta^\prime-carbon potential. The LH2_2 data, taken as a reference to check the data analysis and the model calculations, provide differential and integral cross sections in good agreement with previous results for η′\eta^\prime photoproduction off the free proton.Comment: 9 pages, 13 figures. arXiv admin note: text overlap with arXiv:1608.0607
    • …
    corecore