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Abstract

Nature is observed at all scales; with multiscale modeling, scientists bring together several scales for a
holistic analysis of a phenomenon. The models on these different scales may require significant but also het-
erogeneous computational resources, creating the need for distributed multiscale computing. A particularly
demanding type of multiscale models, tightly coupled, brings with it a number of theoretical and practical
issues. In this contribution, a tightly coupled model of in-stent restenosis is first theoretically examined for
its multiscale merits using the Multiscale Modeling Language (MML); this is aided by a toolchain consisting
of MAPPER Memory (MaMe), the Multiscale Application Designer (MAD), and Gridspace Experiment
Workbench. It is implemented and executed with the general Multiscale Coupling Library and Environment
(MUSCLE). Finally, it is scheduled amongst heterogeneous infrastructures using the QCG-Broker. This
marks the first occasion that a tightly coupled application uses distributed multiscale computing in such a
general way.

Keywords: multiscale modeling, distributed multiscale computing, MML, multiscale modeling language,
in-stent restenosis, MUSCLE, QCG-Broker, Gridspace

1. Introduction

Nature is observed on an abundance of scales, and each of those scales may yield additional insight
in its workings. Consequently, scientists from a range of disciplines are now using multiscale modeling to
connect models and data from different scales in a holistic approach to understand and control nature [1–3].
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Figure 1: The elements that make up gMML. In (a) the computational elements are shown, in (b) are the
edge terminals corresponding to the current operation in the submodel.

Meanwhile, there has been some effort to formalize this type of modeling [4–6], often proposing methods to
subdivide a multiscale model into multiple single scale models.

From a computational point of view, every submodel of a multiscale model may have different, even
contradictory, hardware and software requirements. For example, take a model with one submodel using
a highly-parallel fluid dynamics flow solver, requiring a cluster with Infiniband interconnects; another sub-
model, a cellular automaton parallelized with OpenMP, performing best on a large SMP machine; and
finally, a submodel using a GPU-powered agent based modeling toolkit. Moreover, two submodels might
require different specialized proprietary software, while having no sites available with licenses for both. This
situation is only exacerbated if the multiscale model is tightly coupled, requiring frequent communication
between its submodels. Such a case demands distributed multiscale computing, as was recognized by five
scientific communities behind the MAPPER project1.

From the biomedical domain, the multiscale three-dimensional model of in-stent restenosis (ISR3D) is
an example of a tightly coupled application with heterogeneous submodels [7]. It models a stenosed blood
vessel after stenting to determine if and how a restenosis could occur. The two-dimensionsonal version,
ISR2D, already has published results [8], but ISR3D is far more computationally demanding and requires
distributed multiscale computing.

This contribution shows how a tightly coupled multiscale model can be described, specified, and executed
on distributed resources. First, the application ISR3D is described with the high-level multiscale modeling
language (MML) [5, 9, 10]. Once this is done, it can be specified using the MAPPER Memory (MaMe),
Multiscale Application Designer (MAD), after which the application is managed by GridSpace Experiment
Workbench (EW) [11, 12]. At the same time, ISR3D is implemented using the multiscale coupling library and
environment (MUSCLE) [13], which handles the communication between submodels. Finally, the application
is scheduled on distributed resources using the QosCosGrid stack [14], including EGI, PRACE, and a local
resource. To our knowledge, this is the first time that a tightly coupled multiscale application had a
distributed execution in such a general and automated way. The case of ISR3D forms a validation point for
the aforementioned MML, the tools to convert MML into an executable experiment, and for distributing a
tightly coupled multiscale model.

2. Multiscale modeling language (MML)

To bridge the gap between multiscale modelers and execution environments, the multiscale modeling
language (MML) was conceived [5, 9, 10]. This language introduces a well-defined multiscale modeling
terminology that can be used to describe, verify, analyze, and execute a multiscale model. The foundations
of MML are clearly defined in [5], but will be summarized here.

1http://www.mapper-project.eu/

http://www.mapper-project.eu/
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First, it asks from multiscale modelers that they decompose a multiscale phenomenon in multiple single
scale phenomena. These phenomena form the basis for single scale models or submodels, while their inter-
actions are grounds for couplings between the submodels. Combined, these constitute a multiscale model.
This step is aided by making a scale separation map (SSM) [5, 6], showing the scales and interactions of the
phenomena involved and the extent of scale separation they have.

The next step, after the single scale models are clear, is to analyze the coupling topology of the multiscale
model. A coupling topology describes how a multiscale model is coupled by explicitly creating a directed
graph with submodel instances as nodes, couplings as edges, and number of times that the coupling is
invoked as edge weights. When considering how to execute a multiscale model, a few properties of the
coupling topology are of interest: whether it contains cycles or not; whether it has fixed edge weights, or
fixed number of synchronization points; and whether there is more than one instance per submodel and
whether that amount is fixed.

When a coupling topology is cyclic, it means that there is a feedback loop within the model and that
certain submodels will be revisited; we call this a tightly coupled model. In a loosely coupled model, without
a cycle, a submodel can be considered as finished when it has sent its information. However, in a tightly
coupled model, execution software will need to keep some submodels waiting while others compute.

If the number of submodel instances is dynamic, the execution software and the model will have to
communicate about how many submodel instances should be created. When the number of synchronization
points is dynamic, execution software needs to know when a submodel is needed or finished. In MML,
the coupling topology itself needs to be explicitly specified but its properties can be deduced. It does not
specify how execution software should communicate with a multiscale model, rather, it leaves this to the
implementation of that software.

Although the coupling topology gives a few interesting properties, for a well-defined and full runtime
model a more precise specification is necessary. With MML it is possible to specify submodels and submodel
instances but also their scale, computational requirements, and implementation details. Couplings are
made explicit using the concept of conduits that bind to specific ports of submodels. Submodels should
not be aware of other submodels, rather, data messages between submodels are manipulated by applying
user-defined conduit filters to conduits. For distributing or collecting messages so-called fan-out and fan-in
mappers are used. With these elements MML includes most features for a software architecture description.

For human interaction, MML has a graphical representation called gMML. This features the elements
listed above, as shown in Figure 1, but does not contain any implementation details or information on scales.
It is useful for composing or communicating the architecture of a multiscale model.

For machine interpretation, the XML format xMML captures these features, but also a wide range of
metadata. This includes scale information, possible parameter settings, a datatype system, binding ports
of submodels and mappers, implementation details such as number of cores needed per submodel, but also
descriptive and documentation facilities. In contrast to gMML, xMML can be automatically processed and
it acts as an exchange format of a model.

Once a multiscale modeler has implemented a model and fully described it with MML, it is possible for
software to verify, analyze, and execute it.

3. A three-dimensional in-stent restenosis model (ISR3D)

Coronary heart disease (CHD) causes about 1.9 million deaths per year in Europe, making it Europe’s
most common cause of death [15]. The most common expression of CHD is arteriosclerosis, a thickening and
hardening of blood vessels due to the build-up of atheromatous plaque. The thickening, causing a significant
decrease in luminal area of the blood vessel, is called a stenosis, and has the common intervention of stent-
assisted balloon angioplasty. In this intervention, a balloon is inserted in the blood vessel and inflated at
the stenosis, causing the stent to be placed at that point. The stent acts as a strut or scaffold after the
operation, compressing the plaque and keeping the lumen open. However, in some cases, this treatment
results in in-stent restenosis (ISR), an excessive regrowth of tissue due to the injury caused by the stent
deployment [16, 17]. The precise factors causing in-stent restenosis are yet unknown, although there have
been multiple suggestions.
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Figure 2: The scale separation map (SSM) of the ISR model, containing four submodels: blood flow, drug
diffusion, thrombus formation and smooth muscle cell proliferation. The vertical axis is the logarithmic
spatial size, the horizontal axis the logarithmic temporal size.

The three-dimensional model of in-stent restenosis (ISR3D) is a tool designed to explore which factors
could be the main contributors to the formation of the restenosis. To this end, it models the part of a
blood vessel where a stent has been placed. After evaluating the processes involved in in-stent restenosis
[18], ISR3D is built on the hypothesis that smooth muscle cell proliferation drives the restenosis, and is in
turn affected most heavily by wall shear stress of the blood flow and by growth inhibiting drugs diffused
by a drug-eluting stent. With the model, the effect of different drug intensities, physical stent designs, and
effects of wall shear stress can be evaluated. ISR3D is preceded by a two-dimensional model of in-stent
restenosis (ISR2D) which has a similar model architecture [7] and has published results [8]. However, ISR2D
is inherently limited by its two-dimensional design, which could not account for a full stent design, realistic
cell growth, or exact blood flow. On the other hand, ISR3D requires far more computation; both cell
proliferation and blood flow calculation are an order of magnitude more expensive in 3D.

When analyzed from a multiscale modeling perspective, ISR3D consists of four single scale models or
submodels: smooth muscle cell proliferation (SMC), thrombus formation (Blob), blood flow (BF), and drug
diffusing from a drug-eluting stent (DD). Each of these models act on the same spatial scale, but they all
exhibit temporal scale separation, as can be seen on the scale separation map (SSM) of ISR3D in Figure 2.

Interactions in ISR3D are initiated by SMC, which initializes its cell placement and cell metadata. Then,
for each iteration of the SMC, it sends the cell and stent geometry to Blob, which calculates if any thrombus
formation takes place due to back-flow of the blood. Blob sends the modified geometry so that the blood
flow and drug diffusion can be calculated. Afterwards, the drug diffusion and wall shear stress is mapped to
the individual smooth muscle cells and SMC calculates the next iteration of smooth muscle cell proliferation.
This loop continues a fixed number of times, in the order of magnitude of a few thousand, after which the
model exits.

The coupling topology of ISR3D is tightly coupled since it contains a cycle, seen in the SSM. Each
submodel has one instance; and the number of iterations or synchronization points is fixed by a parameter.
From an computational point of view, the case of ISR3D is only complex in that it is tightly coupled.

The full specification of ISR3D is shown as gMML in Figure 3. The MML specification of ISR3D contains
a few mappers not mentioned above, which do simple data transformations but are necessary to ensure that
the different single scale models are not aware of other submodels and their internal representation or scales.
In practice, these mappers also have a computational cost and should be treated appropriately.

The submodels used in ISR3D are heterogeneous: implemented with programming languages Java, C++,
and Fortran; serial and well parallellized; and with particle and grid-based domains. Each of the submod-
els and mappers are custom made, with the exception of BF, which uses the Palabos Lattice Boltzman
simulator2. A detailed listing of the implementation of the submodels is given in Table 1.

2http://www.palabos.org

http://www.palabos.org
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Figure 3: The gMML of the ISR3D model described in Section 3. The meanings of the elements are described
in Figure 1. The in and out hexagons are fan-in and fan-out mappers, distributing and collecting data to
and from DD and BF.

Table 1: Runtime statistics of different submodels. The test environment is specified in Table 2, then an
order of magnitude runtime per iteration and memory used. The mappers are listed as a combined cost.

Submodel Test environment Runtime/iter. Memory Parallel Language
BF Huygens 10 min. 4 GB extremely, using MPI C++
DD Mavrino 10 sec. 100 MB up to 4 cores, using threads Java
SMC Reef 10 min. 200 MB no C++
Blob Reef 2 min. 50 MB no Fortran
Mappers Reef 30 sec. 500 MB no Java

4. Software

4.1. MUSCLE

Implementing a multiscale model in a modular way is possible in several coupling environments; due
to a close compatibility with MML we have chosen to use the multiscale coupling library and environment
(MUSCLE) [13] to implement ISR3D with. For a multiscale model, MUSCLE is in charge of handling
communication between different submodels. As such, submodels and conduits are explicitly defined in
MUSCLE, as are conduit filters. Its core is programmed in Java but it also supports C, C++, and Fortran.
Mappers can also be implemented in MUSCLE but are not yet available as a separate entity. MUSCLE is
currently being improved to support more elements of MML, making it more flexible towards scheduling,
and support more high-performance computing necessities such as OpenMP, MPI, and GridFTP.

4.2. High level composition and execution tools

To facilitate MML-based composition and execution of multiscale applications such as ISR3D, a set
of supporting tools have been developed, depicted in Figure 4. First, MAPPER Memory (MaMe)3 is a
semantics-aware persistence store to record MML specifications of submodels and their scales. The infor-
mation from MaMe is then fetched by the Multiscale Application Designer (MAD)4 – a user friendly visual

3http://gs2.mapper-project.eu/mame
4http://gs2.mapper-project.eu/mad

Table 2: Computational aspects of the machines that are referred to in the text. Administrative aspects are
listed in Table 3. The number of cores and the amount of memory is listed per node.

Name Processor Clock speed Cores Memory Batch System Middleware
Huygens IBM Power6 4.70 GHz 32 128 GB LoadLeveler UNICORE
Reef Intel Xeon 2.40 GHz 8 16 GB Torque+Maui QCG-Computing
Mavrino Intel Xeon 2.66 GHz 4 16 GB SGE QCG-Computing

http://gs2.mapper-project.eu/mame
http://gs2.mapper-project.eu/mad
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Table 3: Administrative information on the resources described in the text.

Name Provider Location Infrastructure
Huygens SARA Amsterdam, The Netherlands PRACE Tier-1
Reef PSNC Poznań, Poland EGI (PL-Grid)
Mavrino University College London London, England Campus Resource

composition tool that can connect single scale models to form multiscale simulation. MAD can transforms a
high-level MML description into an executable experiment that contains a MUSCLE configuration file and
can be executed in the GridSpace Experiment Workbench (EW).

MaMe
specify

MAD
compose

GridSpace EW
run

submodel A

submodel B

A
B

MUSCLE snippet

Executor

Figure 4: Multiscale programming and execution tools. MAPPER Memory (MaMe) registers information
about MML submodels and mappers; Multiscale Application Designer (MAD) supports a user in composing
simulation from those submodels and transforms MML into an executable experiment executed in GridSpace
Experiment Workbench

MaMe is based on the idea of semantic integration [19]. It supports the exchange and reuse of MML
specifications by other tools via a REST interface, but also provides a web interface for human users.

MAD supports application composition which is implemented as a sequence of drag-and-drop operations
on graphical representations of MaMe components. On a conceptual and visual level, it is used to create
gMML. When connections are created between the nodes MAD is able to perform various export procedures
including xMML and the GridSpace executable format. Exported xMML contains MAD annotations about
the positions of the elements in the MAD tool, so that when importing xMML, the visual composition
persists.

The GridSpace Experiment Workbench5 (EW) [11, 12] supports execution and result management of
infrastructure independent experiments. Experiments are applications composed of code fragments (called
snippets) that can be expressed either in general-purpose scripting programming languages (Bash, Ruby,
Perl etc.) or domain-specific languages (CxA in MUSCLE, LAMMPS, Matlab, etc). Snippets are evaluated
by respective programs called interpreters. GridSpace provides also set of so called Executors that are
responsible for snippets execution on various computational resources - servers, clusters, grid via direct SSH
on User Interface (UI) machine or interoperability layer such as QCG (see Section 4.3). Each snippet can
then be run on different resource.

4.3. Cross-cluster execution with QosCosGrid

Running multiscale application in cross-cluster environment requires addressing the following issues: co-
allocation of heterogeneous resources; coordination of spawning application processes at multiple sites; and
finally, enabling communication between firewalled and NAT-ed systems.

4.3.1. Co-allocation of heterogenous resources

All modern HPC systems are managed by Local Resource Management Systems (LRMS) [20], often
referred to as batch systems. In such environments a user will submit an application for execution (called a

5https://gs2.mapper-project.eu

https://gs2.mapper-project.eu
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job), together with its resource requirements instead of running it directly. At a later time, an LRMS will
start the application when the requested resources are available and all local policies are met, thus preventing
oversubscription of resources. With cross-cluster multiscale applications, every single model (seen as single
job in a given LRMS) must be started at approximately the same time, leading to a problem, as the starting
time of jobs are not known prior submission. One possible solution of this problem, known as resource
co-allocation, is exploiting the Advance Reservation mechanism. In a nutshell, Advance Reservation (AR) is
a reservation created either manually by administrator or automatically by a system (like QCG-Computing
BES/AR service6 [21]) for one or many jobs. An advance reservation is associated with a start and end
time, a set of resources, and a list of users that may use this reservation. Once an AR is created, the system
guaranties availability of resources for a particular group of users in a given time frame, as long as no system
failure occurs.

The QosCosGrid stack uses the AR mechanism available in almost every modern batch system, in order
to co-allocate resources belonging to two or more resource providers. The whole process is managed by
the QosCosGrid metascheduler: the QCG-Broker service7 [14]. Users provide an upper limit on application
runtime and a time window within which the application should start. QCG-Broker tries to find the earliest
time when the requested amount of resources can be booked, and creates an AR for it through the QCG-
Computing service. Sites that do not have the QCG-Computing service installed can accept an AR created
manually; QCG-Broker then tries to create a schedule based on the manual reservation and availability of
other resources as depicted in Figure 5. This process has some similarities with the Two Phase Commit
Protocol [22] known from transactions systems, i.e., when advance reservations were created successfully at
all sites, the job is submitted (COMMIT); otherwise, all reservations are cancelled (ROLLBACK).

Drug diffusion

Admin reservation

QCG reservation

QCG reservation

Blood flow

Mavrino (UCL)

Reef (PSNC)

Huygens (SARA)

Smooth muscle cell

... jobx-1

jobz+1

jobx+1

joby+1joby-1......

MUSCLE

......

jobz-1...

reservation

Figure 5: An example of resources co-allocation at three sites

4.3.2. Coordination of application spawning

In most parallel toolkits used within single clusters there is a master process that spawns worker processes
either using SSH or LRMS native interfaces. This make the task of exchanging contact information (e.g.
listening host and port) between master and workers relatively easy as the master is always initialized before
the workers. With a co-allocated distributed application the master and workers are started independently,
and exchanging information is less trivial. In the QosCosGrid stack, the QCG-Coordinator service accepts
contact information from the master, and provides it to any requesting workers. This relaxes the requirement
that the kernels must be started in some particular order.

4.3.3. Cross-cluster communication

Majority of clusters use private IP addresses for their worker nodes, thus accessing any process running
within a job is not possible without additional effort. In addition, some of sites impose restrictions on
outgoing traffic. In order to distribute multiscale applications that among many clusters, MUSCLE had to
be adapted for firewalled and NAT-ed environments. Firstly, a solution based on the port-range technique
[23] was implemented, a mechanism which limits the ports numbers MUSCLE uses to some predefined range.

6http://www.qoscosgrid.org/trac/qcg-computing
7http://www.qoscosgrid.org/trac/qcg-broker

http://www.qoscosgrid.org/trac/qcg-computing
http://www.qoscosgrid.org/trac/qcg-broker
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Secondly, communication between worker nodes of two clusters located in different administrative do-
mains had to be enabled. This was solved by implementing a user-space daemon: MUSCLE Transport
Overlay (MTO). This daemon is deployed at an interactive node, or any other node that is accessible from
both external hosts and worker nodes, of all clusters involved in a multiscale simulation. Every MTO listens
on a separate address for external and internal requests. The external port must be either accessible from
all the other interactive nodes or the MTO must be able to connect to the external ports of all the others
MTO (i.e. uni-directional connection is needed between every pair of MTOs).

Another issue was that private IP addresses used for worker nodes are not globally unique. Consequently,
MUSCLE port ranges are enforced to be disjoint among all sites. Under this assumption the tuple <
IP; port > is globally unique.

5. Results

In Section 3 an MML description of ISR3D was created. To create a software application it needs to be
integrated with a software framework that can run a tightly coupled multiscale model. To this end, each
of the submodels and mappers of ISR3D were given a MUSCLE wrapper. In particular, BF acted as a
MUSCLE controller that executed a Palabos simulation with MPI.

The information on ISR3D that is presented in Section 3, such as its scale separation map and MML,
could be entered in straightforward manner in MaMe and MAD. First, the individual submodels and mappers
are entered in MaMe, including information on scales, submodel ports and datatypes. In MaMe, it is also
possible to enter preliminary or default parameter settings. Once this is done, the gMML of ISR3D was
constructed using MAD, by connecting the respective ports of submodels and mappers of ISR3D together,
and exported to a MUSCLE configuration file in GridSpace EW. After this step, the MML description
has served its purpose of precisely describing the model computational requirements and is no longer used.
This configuration file contained all parameters set in MaMe and all couplings defined in the MAD. In the
GridSpace EW, the machines that different submodels should be scheduled on can be specified. Then, it
was straightforward to run the simulation by simply pressing start.

Mavrino (UCL) Reef (PSNC) Huygens (SARA)

User

CreateReservations

Run

100 MB 100 MB

User interface

QCG-Broker

4 Cores 8 Cores 32 Cores
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Computing
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Smooth muscle cell 
and other models
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QCG-
Computing UNICORE
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R
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Figure 6: Overall architecture of deployment used during MAPPER demonstration
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An example scenario of a tightly coupled model, ISR3D, running on distributed resources, will be de-
scribed below and is depicted in Figure 6. One of the unique features of this scenario is the integration of
resources provided by EGI, PRACE and local infrastructures. As can be seen from the figure, both drug
diffusion and blood flow were computed on different hosts from the other submodels. For BF there is a very
good reason, it is the only submodel of ISR3D that is extremely well parallelized, and which can make use
of a many-core machine. On the other hand, DD could also have been computed on the same host as SMC,
however, this scenario is also to show the viability of the approach sketched.

With MUSCLE handling the communication between submodels, problem described in Section 4.3 pre-
sented itself, where Huygens did not allow MUSCLE to open ports of worker nodes to the outside. This was
fixed by using the MUSCLE Transport Overlay to relay communications to the Reef machine, which had a
more liberal security policy.

Meanwhile, QCG-Broker made the reservations to the machines that were scheduled in GridSpace EW,
aiming to create a co-allocation. It started by using the manual reservation on Huygens and then proceeded
to make an advance reservation on Mavrino and Reef. The LRMS then started the submodels on the
different machines, relying on MUSCLE to handle communication between the submodels. Once the model
was finished, QCG-Broker collected the data that was generated and returned it to a QCG host, where it
can be collected by the user.

During the time that the model was running, three hosts were reserved, however, the resources were
not used efficiently in this process; future work should focus on this aspect. Notably, the Huygens machine
sat idle when BF was not computing, for instance when SMC was computing. During the run, only few
iterations of ISR3D were performed, for scientific results more iterations will be run. On a run-time of more
than a week, initialization times by Gridspace EW and QCG-Broker are negligible, being in the order of
minutes. Communication overheads between submodels are also relatively small in this case, in the order of
seconds [13] compared to a communication frequency of several minutes (in Table 1).

6. Conclusions and discussion

In this contribution we believe to have shown the first generalizable distributed multiscale execution of
a tightly coupled multiscale model, in this case, ISR3D. This was achieved by using recent foundations by
way of the Multiscale Modeling Language, and tools based on that language: MAPPER Memory and the
Multiscale Application designer. Since these tools were integrated with the application manager GridSpace
Experiment Workbench, that in turn supported MUSCLE and QCG-Broker as execution tools, ISR3D was
executed on heterogeneous infrastructure.

By executing this scenario, ISR3D has the possibility to generate many more results. Other tightly
coupled multiscale models in the MAPPER project are anticipated to follow the same approach, further
steadying and substantiating it. With this approach gaining more users, also its performance will have to
be measured and compared with others.

The inconvenience of using manual reservations on the Huygens machine is a political one, and one of
the aims of MAPPER is also to improve support for advance reservation on e-Infrastructure.

One aspect in particular, resource usage and scheduling, should be explored further. In the scenario that
was sketched here, the Huygens machine was partially idle while the blood flow submodel was not active.
By using more advanced load balancing mechanisms, such as running multiple applications simultaneously
to keep all resources active, this may be circumvented. Alternatively, by supporting the task graph for MML
[5], and dividing an execution of a multiscale model, submodels could be dynamically scheduled to resources,
creating no unnecessary idle reservations.
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[21] M. Mamoński, GFD.179 – Smoa Computing HPC Basic Profile Adoption – Experience Report, Tech. rep., Open Grid
Forum (2011).

[22] G. Weikum, G. Vossen, Transactional information systems: theory, algorithms, and the practice of concurrency control
and recovery, Morgan Kaufmann Pub, 2002.

[23] J. Maassen, H. Bal, Smartsockets: solving the connectivity problems in grid computing, in: Proceedings of the 16th
international symposium on High performance distributed computing, ACM, 2007, pp. 1–10.

http://dx.doi.org/10.1093/bib/bbp038
http://dx.doi.org/10.1039/c0ib00075b
http://dx.doi.org/10.1016/j.ces.2004.02.010
http://dx.doi.org/10.1615/IntJMultCompEng.v5.i6.60
http://dx.doi.org/10.1615/IntJMultCompEng.v5.i6.60
http://dx.doi.org/10.1016/j.jocs.2010.09.002
http://dx.doi.org/10.1098/rsfs.2010.0024
http://dx.doi.org/10.1098/rsfs.2010.0024
http://dx.doi.org/10.1016/j.procs.2010.04.089
http://dx.doi.org/10.1007/978-3-540-69387-1_25
http://dx.doi.org/http://dx.doi.org/10.1007/978-3-642-01970-8_38
http://dx.doi.org/10.1016/S0735-1097(01)01231-1
http://dx.doi.org/10.1098/rsta.2008.0081
http://dx.doi.org/10.1098/rsta.2008.0081

	Introduction
	Multiscale modeling language (MML)
	A three-dimensional in-stent restenosis model (ISR3D)
	Software
	MUSCLE
	High level composition and execution tools
	Cross-cluster execution with QosCosGrid
	Co-allocation of heterogenous resources
	Coordination of application spawning
	Cross-cluster communication


	Results
	Conclusions and discussion

