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*Highlights (for review)

This paper presents MultiGrain/MAPPER — a novel concept, framework and tool for modeling and
simulation based on a multiscale computing paradigm.

MultiGrain/MAPPER has been designed to tackle the computational challenges of large-scale gene-
regulatory networks (GRN) model modeling and simulation tasks.

In particular, MultiGrain/MAPPER realizes a distributed computing solution to reverse-engineering of
GRN models from gene-expression data.

The solution is based on a distributed multi-swarm (multi-island) particle swarm optimization algorithm
we implemented, where PSO islands are mapped to CPU cores.

A detailed evaluation of MultiGrain/MAPPER’s concepts and performance is provided in the paper, with
a particular emphasis on the tool’s computational aspects.
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Abstract

Modeling and simulation of gene-regulatory networks (GRNs) has become
an important aspect of modern systems biology investigations into mecha-
nisms underlying gene regulation. A key task in this area is the automated
inference or reverse-engineering of dynamic mechanistic GRN models from
gene expression time-course data. Besides a lack of suitable data (in partic-
ular multi-condition data from the same system), one of the key challenges
of this task is the computational complexity involved. The more genes in
the GRN system and the more parameters a GRN model has, the higher the
computational load. The computational challenge is likely to increase sub-
stantially in the near future when we tackle larger GRN systems. The goal
of this study was to develop a distributed computing framework and system
for reverse-engineering of GRN models. We present the resulting software
called MultiGrain/MAPPER. This software is based on a new architecture
and tools supporting multiscale computing in a distributed computing envi-
ronment. A key feature of MultiGrain/MAPPER is the realization of GRN
reverse-engineering based on the underlying distributed computing frame-
work and multi-swarm particle swarm optimization. We demonstrate some
of the features of MultiGrain/MAPPER and evaluate its performance using
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both real and artificial gene expression data.

Keywords: Gene-regulatory networks, Reverse-engineering of
gene-regulation models, Distributed multiscale computing

1. Introduction

Many complex phenomena occur across multiple spatial and/or temporal
scales. Such phenomena are difficult to model and simulate within a single,
monolithic approach. Multiscale modeling and simulation adopts a divide-
and-conquer philosophy that solves a complex problem by decomposing it
into a set of simpler scale-specific sub-models and combining these into a
global integrated model, called a multi-scale model [1]. A central modeling
task in multiscale modeling is how information specific to one scale-specific
sub-model is transformed to another. This information transformation is
called scale-bridging. A computing challenge in multiscale modeling and sim-
ulation is the coupling and coordinated execution of multiple codes represent-
ing the sub-models of a multiscale model. We refer to this kind of computing
as multiscale computing. This article presents a comprehensive computing
framework and tool called MultiGrain/MAPPER. This approach has been
designed for modeling and simulation of large gene-regulatory networks. The
tool was developed as part of the European FP7 project Multiscale Appli-
cations on European e-Infrastructures (MAPPER) [2, 3, 4, 5|. The goal of
MAPPER was to develop a general framework and technology facilitating the
development, deployment and execution of distributed multiscale modeling
and simulation applications [1, 6].

Based on tools and services developed in the MAPPER project, Multi-
Grain/MAPPER realizes a gene-regulation model reverse-engineering pro-
cess based on a multi-swarm particle swarm optimization (PSO) algorithm.
In this approach, the overall particle swarm is partitioned into multiple sub-
swarms (which assume the role of sub-models in the MAPPER framework),
which are than mapped onto the processor cores of a (potentially distributed)
computing resource. The rationale behind this approach is three-fold: First,
we expect that the multi-swarm PSO approach is less prone to converge to
suboptimal solutions. Second, by casting the reverse-engineering problem
into the multiscale modeling and simulation framework of MAPPER, we will
be able to develop future versions of MultiGrain/MAPPER which will de-
compose very large gene-regulation networks into modules of sub-networks




and synthesize these into a coupled multi-network overall solution. And
third, by building this approach on the distributed multiscale computing ca-
pabilities of MAPPER, we should be able to process large gene-regulatory
network problems by taking advantage of computing resources in distributed
computing environments.

The current study focuses on the third aspect. In particular, we are
interested in how well the computational performance behaves under different
problem and computing environment configurations. We have evaluated the
performance of MultiGrain/MAPPER based on data from real biological and
artificial gene-regulatory networks.

The remainder of this article is organized as follows: Section 2 reca-
pitulates the basic biological aspects of gene-regulatory networks and the
main “ingredients” of reverse-engineering gene-regulation models from gene-
expression data. In Section 3.1, we review some of the state-of-the-art tools
used to address the reverse-engineering task. Section 3 presents our ap-
proach, including a description of our multi-swarm PSO algorithm and its
implementation in MultiGrain/MAPPER. This is followed by Section 4, in
which we describe and discuss our performance evaluation experiments and
their results. Finally, Section 5 provides some concluding remarks and a brief
look at future developments in this area.

MultiGrain/MAPPER software resources are available from this reposi-
tory: https://apps.man.poznan.pl/svn/sbml-toolbox/GRNApplication/

2. Reverse-engineering GRN models

Cells regulate the expression of their genes to create functional gene prod-
ucts (RNA, proteins) from the information stored in genes (DNA). Gene
regulation is a complex process involving the transcription of genetic infor-
mation from DNA to RNA, the translation of RNA information to make
protein, and the post-translational modification of proteins. Gene regula-
tion is essential for life as it allows an organism to respond to changes in
the environment by making the required amount of the right type of protein
when needed. Complex gene-regulatory processes are coordinated by mul-
tiple genes, whose mutual influences are organized as a gene-regulation net-
work (GRN). Developing quantitative models of gene regulation is essential to
guide our understanding of complex gene-regulatory processes. For instance,
understanding gene-regulatory processes in the context of diseases is increas-
ingly important for the development of treatment and prevention strategies.




Automated reverse-engineering of dynamic mechanistic GRN models from
gene-expression time-series data is becoming an area of growing interest in
systems biology research [7, 8, 9, 10, 11].

Reverse-engineering quantitative dynamic mechanistic GRN models with
accurate structure and high predictive performance is a long-standing prob-
lem [9]. Currently, some of the main challenges include:

o A lack of sufficient amounts of relevant gene expression time-course
data. (1) While the number of sampling points is important (typically,
10 to 50 time points are measured), far more important is to have mul-
tiple stimulus-response datasets from the same system under different
stimuli [7]. This is a challenging requirement for current experimen-
tal practice. (2) GRN stimulus-response data from GRN systems with
experimentally confirmed GRN regulatory structure. A good positive
example is the study of Cantone and colleagues [12].

e A lack of reverse-engineering algorithms and methods that are able to
incorporate existing biological knowledge effectively.

e A lack of algorithms and tools whose computations scale well when the
number of genes in the GRN system are increased. Currently, most
algorithms and tools are applied to systems involving only 5- to 10
genes.

e Systematic validation studies similar to the work by Cantone et al. [12]
that evaluate all aspects (predictive and structure inference aspects) of
the algorithm [12].

Reverse-engineering dynamic mechanistic GRN models from gene-expression
time-series data involves the following main “ingredients”: data, model, sim-
ulation and reverse-engineering algorithm.

1. Data. We reverse-engineer a GRN model from gene-expression data
that contains measurements over a set of consecutive time points. Thus,
a GRN system with n genes corresponds to a dataset withi=1,....n
time series, each representing the mRNA abundance of gene i at time
point k=1,...,m.

2. Model. A system model (short: model) is a mathematical specifica-
tion that represents the genes of a GRN system and their mechanistic
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regulatory relationships in terms of variables and parameters. A model
variable represents the time-variant mRNA abundance expressed by a
gene, and a model parameter represents time-invariant biological and
experimental conditions of the GRN system (e.g. the maximal expres-
sion rate of a gene).

3. Simulation. Based on the initial values of all variables, called the
initial condition, a system simulation (short: simulation) computes the
variables’ response to the initial condition over a specified time interval.

4. Algorithm. We use a reverse-engineering algorithm to create (infer)
a concrete GRN model from gene-expression data, by iteratively gen-
erating candidate models until we have found one that meets certain
quality criteria.

The quality of a GRN model depends on two factors: the model’s ez-
planatory power (or model completeness) and the model’s predictive power
(or model correctness).

A model’s explanatory power depends on how well the elements of a
mathematical model specification correspond to the salient features of the
modeled system. A model’s predictive power is estimated by simulating the
system’s response to the initial condition captured in an independent vali-
dation dataset [13]. The greater the deviation (error) between the response
time courses predicted by the model and the actual time courses in the valida-
tion data, the lower the predictive power of the model. Reverse-engineering of
GRN models from data is a highly compute-intensive process, hence a crucial
aspect of a reverse-engineering algorithm is the computational performance
of its implementation.

GRN modeling and simulation software tools implement various features
that realize the elements listed above. The diagram in Figure 1 depicts the
basic components and “workflow” of a typical GRN model reverse-engineering
algorithm. The cloud shape on the left represents the GRN system under
study. In this simplified example, the GRN system has ¢ = 1, 2, 3 genes cor-
responding to the model variables x, 9, x3, respectively. The series of dots
labeled Ezperimental Data illustrates the three gene-expression time-series
that have been experimentally obtained from the GRN system over 8 con-
secutive time points. We refer to this as the training dataset. The right part
of Figure 1 shows the main reverse-engineering loop. The network shape
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Figure 1: GRN model reverse-engineering workflow. The modeling and simulation loop
keeps generating models which predict data until the quality of a candidate is deemed
acceptable.

on the right (labeled GRN Model) is a graphical depiction of an algorithm-
generated concrete candidate model with gene-regulatory interaction links
between the three genes of the system. The algorithm simulates the system
based on the candidate model and the initial condition of the dataset (arrow
labeled simulate). The simulation produces a predicted or simulated dataset
(curves labeled Predicted Data). The experimental and predicted data are
then compared (diamond shape) to assess the quality of the candidate model.
If the quality is deemed acceptable, the candidate model is retained as the
final candidate model. The final candidate model is still subject to validation
on independent data (this is not depicted in the diagram).

The simulation of the predicted time series depicted in Figure 1 involves
the numeric integration of the model equations. This process and the subse-
quent quality assessment is carried out many times and, in terms of compu-
tation effort, is the most costly part of the reverse-engineering process.

Quantitative dynamic mechanistic reverse-engineering algorithms require
a mathematical formulation of the GRN model in the form of a set of cou-
pled ordinary differential equations (ODEs) [11]. Each equation describes
the expression rate of a gene dependent on the activity of all genes in the
GRN system. The choice of rate law depends mainly on three factors: First,
the ability of the model to represent both gene network structure and the
quantitative mechanistic gene-gene interactions. Second, the ability of the




model to capture highly non-linear variation of gene expression over time.
Third, the ability of the model to provide a meaningful biological interpreta-
tion of the model parameters. Common rate law choices include the artificial
neural network (ANN) [14], s-system [15] and the general rate law of tran-
scription [16].

Capitalizing on the results of a comparative study by Swain et al. [11], we
based our work on the ANN rate law formalism [14] defined by Equation (1).

dx; 1
dﬁtz = B ﬁﬂz’ (1)

1+ exp(vi — Yo wij @)
j

where

o v, x; € {r1,29,...,2,}: Time-dependent transcript concentrations of
gene ¢ and j, respectively, where n is the total number of genes in the
GRN system;

e dx;/dt € R: Total rate of change of z; at time ¢;
e (,; € R*: Maximal synthesis rate of transcript ;;

e w;; € R: Type of synthesis regulation of transcript x; by z;, such that

wi; > 0: Synthesis activation of z; by x;;
wij < 0: Synthesis repression of x; by x;;

w;j = 0: No synthesis regulation of z; by z;;

e |w;;i| € Ry: Relative weight of synthesis-regulatory influence of x; on x;;
e 7; € R: Activation/repression threshold of x; synthesis;

e 3; € RT: Degradation rate constant modulating degradation rate of x;.

In Equation (1), the model parameter &; represents the mazimal rate at
which x; can be synthesized. The sum Zj wi;x; represents the combined
weighted influences of the regulators xy, s, ..., z, on the synthesis of tran-
script z;. The term 1/(14exp(-)) maps the regulatory influences onto the unit
interval with sigmoidal kinetics. Sigmoidicity (steepness of sigmoid curve) of
the kinetics is controlled by the weights in ) jwijzj. The larger the abso-
lute values of the weight sum, the steeper the sigmoidicity. High sigmoidicity




means a switch-like behavior of activation (switch-on) and repression (switch-
off). Low sigmoidicity represents a “smooth” or “soft” switch. The switch
threshold is controlled by the parameter ~;. In particular, for > Wi ="
the rate of transcript synthesis is half its maximum value: &;/2. For large
positive values of the combined weighted influences, Zj wijx; >> 7, the
synthesis rate approaches ¢&;, and for large negative values, > Wiy << i,
the synthesis rate approaches zero.

3. Approach
3.1. Tools of the trade

We have analyzed state-of-the-art software tools that allow the reverse-
engineering of dynamic ODE-based models from time-series data. This anal-
ysis enabled us to inform the design of MultiGrain/MAPPER. The list of
tools reviewed is not exhaustive, but presents an important set of available
tools.

e The Complex Pathway Simulator (COPASI) [17] has become a stan-
dard modeling and simulation tool in systems biology.

e Condor-COPASI [18] automates the parallelization and deployment of
COPASI simulations on high-performance computers. Condor-COPASI
relies on COPASI’s [17] ODE solver and optimizations capabilities.

e ByoDyn [19] facilitates the modeling and simulation of biochemical net-
works. ByoDyn supports SBML and runs on a server (which executes
user jobs) that is accessed via a Web-based and a command-line client.

e JSim [20] is a modeling and simulation tool primarily designed for sys-
tems biology applications. JSim supports both SBML and CellML
exchange formats.

e The Systems Biology Toolbox 2 (SBToolbox2) is a MATLAB toolbox
for modeling and simulation in systems biology. SBToolbox2 imple-
ments a PSO variant using pattern search for global optimization [21].

e SBML-PET-MPI [22] is a parallel parameter estimation tool for SBML-
based models. The tool’s parallel computing capability is implemented
using the message passing interface (MPI) protocol [23].




e SBMLSimulator [24] is a Java tool allowing users to model and simulate
SBML-encoded models. SBMLSimulator relies on the Systems Biology
Simulation Core library for its numerical methods [25].

e Virtual Cell (VCell) [26] is an open-source software enabling the model-
ing and simulation of cellular biological processes. VCell offers a multi-
user, distributed environment designed to access resources spread over
multiple sites.

e The Systems Biology Software Infrastructure (SBSI) [27] is a software
suite that supports model parameter estimation tasks. SBSI empha-
sizes privacy and security requirements in communications between
client and HPC server, while providing a standard HPC-enabled im-
plementation for model parameter estimation.

To address some of the challenges and requirements in modeling and sim-
ulation of GRNs, we have developed a tool called MultiGrain/MAPPER.
MultiGrain/MAPPER has been developed as part of a more comprehensive
project called Multiscale Applications on European e-Infrastructures (MAP-
PER) [2, 3, 5]. Efficient execution of coupled multiscale simulations is a major
challenge in multiscale modeling and simulation. One of the main goals of
MAPPER was to address these and other multiscale modeling and simulation
challenges by developing a general framework and technology facilitating the
development, deployment and execution of distributed multiscale modeling
and simulation applications [1, 6].

MultiGrain/MAPPER focuses on the computational aspects of reverse-
engineering GRN models from gene-expression time-series data. Thus, we
generally do not emphasize the spatiotemporal separation of GRN processes.

3.2. GRN model reverse-engineering algorithm

A central piece in the MultiGrain/MAPPER GRN reverse-engineering
algorithm is our multi-swarm PSO approach. Particle swarm optimization
is a population-based stochastic optimization technique inspired by flocking
or swarming behavior of animals [28]. The main advantage of PSO is that it
is ideally suited for optimization problems involving continuous dimensions.
A PSO process is initialized with a population (swarm) of random solutions
or individuals called particles. It searches for an optimal solution by itera-
tively creating new generations of the particle swarm. In each generation,
the position and velocity of all particles in the population are updated. A




particle’s position in the solution space represents a concrete solution. A
particle moves through the solution space with a specific velocity.

The two basic update rules of an enhanced version of PSO [29] are shown
in Equations (2a) and (2b).

Up(9+1) =w Gp(g) + 1 m(-) (Gp(9) — Tp(9)) + c2 () (Zkl9) — Zp(g)) (2a)
Tp(g +1) = Tp(g) + Tlg +1) (2b)

where Z,(g) and Z,(g + 1) denote the position of particle p in an n-
dimensional space at generations g and g+ 1, respectively. The n dimensions
correspond to the n GRN model parameters. v,(g) and ,(g + 1) denote the
velocity of particle p at generation g and g + 1, respectively. 7,(g) denotes
the best personal solution (position) of particle p until generation g. 2x(g)
denotes the best global solution (position) of any particle k& achieved until
generation g. w denotes the inertia weight used to balance global and local
search [29]. r(-) denotes a function that samples a random number from the
unit interval [0,1]. And ¢; and ¢y are positive learning constants.

In analogy to genetic algorithms, a multi-swarm variant of PSO partitions
the particle swarm into multiple sub-swarms, each located on an island. In
this multi-swarm or multi-island PSO approach, each sub-swarm is allowed to
evolve separately for a number of generations before some randomly selected
particles are migrated between islands. The multi-swarm version is thought
to have a better chance to reach a global optimum. MultiGrain/MAPPER
implements a multi-swarm PSO algorithm. Another reason for adopting this
approach is that it allows us to realize reverse-engineering of GRN mod-
els using MAPPER’s multiscale computing model which sub-divides a mul-
tiscale simulation into a set of coupled sub-simulations. In particular, a
MultiGrain/MAPPER PSO island corresponds to a MAPPER sub-model.
Furthermore, in the concrete implementation of MultiGrain/MAPPER (see
Figure 2), one PSO island is mapped exactly onto one CPU core. We be-
lieve that this approach leads to a highly scalable GRN reverse-engineering
process and also leaves room for accommodating future modeling and simula-
tion strategies in which complex GRN systems are decomposed into multiple
sub-systems.
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3.3. MultiGrain/MAPPER software

MultiGrain/MAPPER is a software that implements the multi-swarm
PSO algorithm described in Section 3.2. MultiGrain/MAPPER is an application-
specific component of a distributed multiscale computing architecture called
MAPPER [2, 6, 30, 1]. The MAPPER architecture has been designed to meet
the large-scale computing requirements of multiscale modeling and simula-
tion applications across a variety of domains.

Figure 2 depicts the main components of the MultiGrain/ MAPPER tool.
The boxes labeled Particle Swarm Optimization (PSO) and ODE Solver rep-
resent the main components realizing the multi-swarm PSO reverse-engineering
algorithm discussed in Section 3.2. The box labeled Model and Data Repos-
itories corresponds to tools and components that realize the management of
various gene expression datasets (experimental and simulated) and models.
Both GRN models and gene expression data can be imported/exported us-
ing various standard exchange formats (box labeled SBML, SBRML). The
boxes labeled MUSCLE and QCG Broker at the bottom of the diagram
stand for tools and components that handle the coordinated execution of
MultiGrain/MAPPER components in distributed computing environments.

User Interface SBML, SBRML, xMML
N N N
\4 V \4
e
PSO Controller | Single-Scale I Experimental
= Dat
g A 7, Mo/d(als ata
8 &> \ 2 \ 4 <
A < » —
8 PSO Island |€>] PSO Particle ultiecale
Models Data
Particle Swarm Optimization (PSO) Model and Data Repositories
N N
\4 V
Execution and Communication
MUSCLE QCG Broker Environment/Tools

Figure 2: High-level view of MultiGrain/MAPPER software components and their rela-
tionship.

The MUSCLE library [30] facilitates the coupled execution of sub-models
by enabling communication channels (called conduits) between the sub-models.
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In MAPPER, MUSCLE is a key component facilitating the coupling of multi-
ple scale-specific sub-models into a multiscale model. In MultiGrain/MAPPER,
MUSCLE is the central component facilitating the control and interaction of
PSO islands in our implementation of multi-swarm PSO reverse-engineering
algorithm. We use MUSCLE, because it is well integrated with other MAP-
PER components, and because it will play a crucial role in future Multi-
Grain/MAPPER versions supporting modeling and simulation of coupled /modular
GRN systems.

We used the MAPPER-developed Multiscale Modeling Language (MML)
and its XML-based implementation called xMML [31, 1] to specify the com-
putational experiments we carried out to evaluate the performance of Multi-
Grain/MAPPER. MML provides concepts and guidelines for specifying a
multiscale model (sub-models and coupling structure of sub-models) and
their hardware and software dependencies in a distributed computing envi-
ronment. MML is supported by a Graphical Multiscale Modeling Language
(gMML) — a graphical notation developed to visualize a multiscale model
specified in MML.

Both MAPPER and MML support two fundamental forms of coupled
multiscale simulations: acyclic and cyclic coupled simulations. Acyclic cou-
pling entails a sequential execution of the model codes, and cyclic coupling
occurs when two sub-models in a multiscale model exchange information
(input or output) during simulation of the overall multiscale system. In
cyclically coupled multiscale models, there is a need to synchronize execu-
tions. Reverse-engineering GRN models with MultiGrain/MAPPER realizes
a cyclic coupling topology. In MultiGrain/MAPPER this is implemented
based on the following MAPPER tools: QCG Broker, GridSpace Experi-
mental Workbench, MAPPER Memory, and Multiscale Application Designer
(Figure 2).

The QCG Broker manages the distributed (cross-cluster) computations
of MultiGrain/MAPPER. It is useful for deploying experiments on execu-
tion hardware and retrieving the results after the computations are com-
pleted. It enables two important features related to resource management:
advance reservation and co-allocation [32]. These features facilitate a reser-
vation of computing resources ahead of the actual use, and the synchronized
co-allocation of resources. The QCG Broker also provides functionalities
enabling multi-user support and privacy through the encryption of the com-
munication between the client (the user) and the server back-end. GridSpace
Experimental Workbench offers a graphical user interface and workflow tools
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for specifying and monitoring distributed MultiGrain/MAPPER computa-
tions and their results. The MAPPER Memory (MaMe) and the Multiscale
Application Designer (MAD) are two MAPPER tools used for storing sub-
models and building multiscale models (defining their coupling topology)
respectively [2]. Multiscale Application Designer is able to export the mul-
tiscale models directly into the GridSpace Experimental Workbench using
the xMML file format. The ODE solver in MultiGrain/MAPPER is based
on Michael Thomas Flanagan’s Java Scientific Library [33], and employs the
Java version of the libSBML [34] library to read and write SBML models.

3.4. MultiGrain/MAPPER in action

The diagram in Figure 3 illustrates how MultiGrain/MAPPER compo-
nents interact at run-time. The diagram shows a reverse-engineering process
involving 4 PSO islands (rounded boxes) each harboring 9 PSO particles
(shown as circle shapes). In this scenario, the 4 islands are distributed over
two execution sites (outer boxes labeled Ezecution Site/Cluster 1 and 2)
in a distributed computing environment, with 2 PSO islands on each site.
Each PSO island is implemented via a MUSCLE kernel. MUSCLE kernels
are software containers representing various multiscale modeling and simula-
tion elements in a distributed computing environment. The PSO controller
component, which coordinates the overall PSO multi-swarm process, is also
realized via a MUSCLE kernel. In a distributed MultiGrain/MAPPER pro-
cess, each site hosts a MUSCLE instance (large box labeled MUSCLE). In
a cross-cluster scenario, involving more than one site or cluster (e.g. Fig-
ure 3), an additional component called MUSCLE Transport Overlay (MTO)
is needed to facilitate communication among MUSCLE instances. The MTO
works either with non-blocking TCP/IP sockets or with using the MPWide
library (which can provide higher message-passing performance over a wide-
area network for larger messages). The one-directional arrows in Figure 3
represent MUSCLE conduits. Conduits facilitate 1-to-1 communication (or
coupling) between MultiGrain/MAPPER components. MUSCLE mappers
(hexagonal shape in Figure 3) combine the data of multiple sources or ex-
tract multiple messages from a single observation. The red arrows in the
diagram depict the migration of particles between islands in a ring fashion.
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Figure 3: Run-time view of MultiGrain/MAPPER components and their interaction.

4. Evaluation

We performed two sets of experiments to evaluate the effectiveness and ef-
ficiency of MultiGrain/MAPPER. The first set of experiments was designed
to compare the quality (effectiveness) of GRN models reverse-engineered
with MultiGrain/MAPPER with those reverse-engineered by related and rel-
evant state-of-the-art tools. We chose the training and validation errors as
the main criteria for quantifying the quality of the models generated with
these tools. In a second set of experiments we assessed the computational
performance (efficiency) of MultiGrain/MAPPER in different problem and
system configurations. Here, we were particularly interested in how Multi-
Grain/MAPPER scales with the complexity of the problem (number of genes
of the investigated system), the number of PSO islands in our multi-island
PSO reverse-engineering algorithm, and with different local and distributed
computing configurations. In our experiments we employed data from artifi-
cial and real biological (yeast and sea urchin) GRN systems.

4.1. Comparison with state-of-the-art tools

To evaluate how MultiGrain/MAPPER fares in terms of the quality of
the reverse-engineered models, we compared MultiGrain/ MAPPER with var-
ious state-of-the-art tools that implement the automated inference of SBML-
encoded GRN models from time-series gene-expression data. The selected
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tools vary largely in terms of software and hardware requirements and the
level at which processing can be controlled by the user. These constraints
make an absolutely fair comparison difficult.

These comparisons are based on the data obtained from 3 GRN systems:
2 real biological systems (yeast and sea urchin organisms), and 1 artificially
created GRN system. For each system, we had a training dataset (used to
infer a model) and an independent validation dataset (used to validate a
model).

Yeast: The data obtained from the yeast GRN system was published by
Cantone et al. [12], it consists of 5 genes which interact through 5 synthesis
activators and 3 synthesis repressors. From the total pool of data generated
by Cantone and colleagues, we selected two datasets containing the aver-
ages from five ‘switch-on” and four “switch-off” experiments, respectively.
Hence, we call the two datasets switch-on and switch-off, corresponding to
a medium shift of the yeast cells from a glucose- to a galactose-containing
environment, and vice-versa. We removed the first data points from both
datasets as these measurements corresponded to an initial preparatory ex-
perimental phase which included the perturbation (the medium shift). The
final (edited) datasets that we used contained 15 time points per gene for the
switch-on (we used as training data to infer models) and 20 time points per
gene for the switch-off dataset (we used to validate the inferred models).

Sea urchin: We extracted the time-series data (48 sampling points) of 11
genes from two gene expression published datasets from sea urchin develop-
ment studies [35, 36, 37].

Artificial: We employed the Java Artificial Gene Network tool [38] to cre-
ate an 11-gene artificial GRN system with an average regulatory connectivity
of 3. From this system, we generated gene-expression time-series comprising
16 time points under different initial conditions.

We focused our comparison on tools that support the import of SBML-
encoded GRN models and feature parameter optimization. The tools vary
considerably in the way they process and report errors. To ensure a fair
comparison based on training and validation errors, we decided to import all
models created by the tools into a separate R code developed in-house. The
R code was used to simulate (predict the response to the initial conditions in
the training and validation data) the models and to compute the following
three errors for each model-dataset combination: the root mean squared error
(RMSE) and two types of normalized root mean squared error (NRMSE),
namely NRMSFE1 and NRMSE2. NRMSFE1 divides the RMSE by the mean
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error, and NRMSE2 divides RMSFE by the error range. The NRMSEs have
the advantage that comparison across data of different scales is possible [39].

To account for the inherent stochastic variability in the reverse-engineering
process (Eq. (2)), we reverse-engineered 5 GRN models with each tool from
the same training dataset and validated each model against the validation
dataset. We report the average training and validation RMSE, NRMSE1 and
NRMSE2 in Table 1. All experiments are based on the ANN GRN model
formulation shown in Eq. (1). Our ANN-based GRN models were encoded
in SBML format and then imported by the tools. The following tools were
subject to this comparison: COPASI, JSim, SBML-PET-MPI, SBMLSimu-
lator and MultiGrain/MAPPER. For various technical reasons, we could not
include ByoDyn and SBToolbox2 in the comparison.

The parameters of all tools were set to comparable values where possible.
In particular, we used the ANN rate law model formulation defined by Equa-
tion (1) for all models and set the training error to near-zero to allow sufficient
time for inferring optimal parameter values. To constrain the parameter op-
timization search space, we set the allowed ANN model parameter intervals
in all experiments as follows: maximal transcript synthesis rate &; € [0, 10];
sensitivity ; € [—10,10]; transcript degradation rate constant (; € [0, 3],
and transcript synthesis regulation type and strength w;; € [—10,10] . The
tool configurations for the optimization part are described below.

MultiGrain/MAPPER: We set the PSO algorithm control parameters in
line with the guidelines by Pedersen [40]. The main PSO configuration on
MultiGrain/MAPPER was as follows:

e The total PSO swarm of 500 particles was distributed over 10 PSO
islands, each hosting 50 particles.

e The maximum number of generations per island was set to 1000. After
25 generations, 3 particles were migrated from one island to the next
in a ring topology.

e The PSO learning factors and inertia weight defined by Equation (2)
were set as follows: ¢; = —0.2, ¢ = 4.0 and w = —0.2.

COPASI: We used “value scaling” as the weight method and set all
weights to 1. For the optimization method, we chose a PSO with a pop-
ulation size of 500 particles and a maximum number of 1000 particle gener-
ations. We converted the mean squared error reported by COPASI to the
RMSE. Our experiments were based on COPASI version 4.14 (Build 89).
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JSim: JSim does not implement PSO but a genetic algorithm approach
to optimize GRN model parameters. We have set the maximum number of
generations to 1000 and the population size to 500.

SBML-PET-MPI: We have configured the tool’s stochastic ranking evo-
lution strategy [41] to execute 1000 evolutionary generations. The authors
claim that the parallel speedup of their tool is directly proportional to the
total number of model parameters and the number of time points in the data.
Our experiments are based on SBML-PET-MPI, version 1.2.

SBMLSimulator: We selected the tool’s PSO implementation and a grid
topology for the particles. We set the swarm size to 500 particles and we
allowed a maximum number of 500,000 fitness evaluations, and set the identi-
cal learning factor and inertia PSO parameters as in MultiGrain/MAPPER.
We selected the Runge-Kutta ODE solver method (the same used by Multi-
Grain/MAPPER). We used SBMLSimulator, version 1.2.1.

Table 1 shows the training and validation errors of the GRN models that
were reverse-engineered with the different tools from three sets of data. The
errors in the top three sets of rows represent the average over 5 replicates
of the entire reverse-engineering process. The panel of rows at the bottom
shows the average across the three organisms. Notice, we did not include the
average of the RMSE errors, as it does not make sense to compute the mean
for this type of error as it is scale-dependent. The table highlights the lowest
error in bold for each type of error (training, validation) and panel.

The main objective of this comparison was to demonstrate that Multi-
Grain/MAPPER is comparable to state-of-the-art tools in terms of the qual-
ity of the reverse-engineered models. We believe that the results reported
in Table 1 provide sufficient evidence that this is actually the case. The
core focus of this study lies on evaluating the computational performance of
MultiGrain/MAPPER in large-scale computing environments. The remain-
ing sections concentrate on this aspect.

4.2. Efficiency in local and distributed scenarios: artificial data

To evaluate the computational performance of MultiGrain/MAPPER,
we assessed the the reverse-engineering process in both local and distributed
computing setups. Our goal was to determine how the reverse-engineering
computations scale dependent on the complexity of the problem (number
of genes in the GRN system), the PSO island configuration of our multi-
island PSO reverse-engineering algorithm, and the computing environment
(clusters, resource management).
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Table 1: Comparison of reverse-engineering performance of various state-of-the-art tools.

Tool Mean Training Error Mean Validation Error
RMSE NRMSE1 NRMSE2 RMSE NRMSE1 NRMSE2
Yeast System (5 genes)
COPASI 0.0077 0.4489 0.2398 0.0165 0.8736 0.1613
JSim 0.0131 0.7652 0.4086 0.0477 2.5281 0.4667
SBML-PET-MPI 0.0055 0.3211 0.1715 0.0154 0.8148 0.1504
SBMLSimulator 0.0091 0.5290 0.2825 0.0232 1.2289 0.2269
MultiGrain/MAPPER 0.0064 0.3723 0.1988 0.0141 0.7476 0.1380
Sea Urchin System (11 genes)
COPASI 4916.56 2.2204 0.1193 3271.11 1.7427 0.1440
JSim 8904.45 4.0213 0.2160 4842.55 2.5799 0.2132
SBML-PET-MPI 3366.14 1.5202 0.0817 2316.79 1.2343 0.1020
SBMLSimulator 3254.08 1.4696 0.0790 2368.01 1.2616 0.1043
MultiGrain/MAPPER 3589.43 1.6210 0.0871 2629.34 1.4008 0.1158
Avrtificial System (11 genes)
COPASI 2.0850 0.3470 0.1423 2.5714 0.4163 0.1680
JSim 3.7563 0.6252 0.2563 3.7296 0.6038 0.2436
SBML-PET-MPI 6.2134 1.0341 0.4239 5.6354 0.9124 0.3681
SBMLSimulator 1.9710 0.3280 0.1345 2.3349 0.3780 0.1525
MultiGrain/MAPPER 0.8688 0.1446 0.0593 1.5234 0.2467 0.0995
Average

COPASI - 1.0054 0.1671 - 1.0109 0.1578
JSim - 1.8039 0.2937 - 1.9039 0.3079
SBML-PET-MPI - 0.9585 0.2257 - 0.9871 0.2068
SBMLSimulator - 0.7756 0.1653 - 0.9562 0.1612
MultiGrain/MAPPER - 0.7127 0.1151 - 0.7984 0.1178
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Reverse-engineering a GRN model from data is a stochastic process that
involves the repeated construction and quality evaluation (training error) of a
potentially very large number of candidate models. In MultiGrain/MAPPER,
a PSO particle essentially represents a candidate model (strictly speaking,
a PSO particle represents a set of concrete values of the model parame-
ters). Approximately 80% to 85% of the total computation effort in reverse-
engineering goes into fitness evaluation of candidate models. The computa-
tionally expensive task is the numerical integration of the model equations.

We use the total number of fitness evaluations and the wall time to bench-
mark the computational performance of the reverse-engineering process. In
our reverse-engineering experiments, each PSO island runs in its own Java
virtual machine on a separate CPU core. Therefore, the total number of cores
is the same as the number of islands in our multi-island PSO algorithm.
Adding islands and cores in this way is also known as weak scaling. How
well (relating to efficiency) a reverse-engineering process is handled by Multi-
Grain/MAPPER software depends on the problem (size parameter space),
the availability and allocation of resources (CPU cores), and the commu-
nication between the MultiGrain/MAPPER components implementing the
algorithm. Based on fitness evaluations and wall time, we use throughput as
a performance metric:

evaluations

(3)

throughput = :
time

where evaluations refers to the total number of fitness evaluations per-
formed, and time denotes the wall time, i.e. the time period from initiation
to termination of the entire optimization process.

In particular, we were interested in the computing performance (wall
time, throughput) of MultiGrain/MAPPER dependent on the following con-
ditions: (1) The size (number of genes) of the GRN system. (2) The number
of PSO islands (and hence CPU cores) of our multi-island PSO algorithm.
(3) The protocol used to allocate computing resources. (4) The computing
environment: local (single cluster) and distributed (two clusters)

Notice, since we set the training error threshold to near-zero and kept
the number of PSO particles/island and the number of particle generations
constant, adding a PSO island increases the number of fitness evaluations by
a predefined amount. Because the MultiGrain/MAPPER computing model
maps a PSO island to exactly one CPU core, adding an island increases
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both the computational load (more particles need to processed) as well as
the computational resources (one core per island) in a well-defined manner
(weak scaling). This allows us to benchmark the system’s computational per-
formance. In particular, if our multi-island PSO algorithm implementation
scales well, we should see an increase of throughput approximately propor-
tional to the increase of PSO islands. For instance, a doubling of islands
should roughly lead to a doubling of throughout.

The first experimental condition was the size (number of genes or gene
expression data series) of the target GRN system. We carried out experi-
ments with both artificial and real data, using data consisting of 11, 22 and
33 gene expression time-series, respectively.

To generate artificial gene-expression data, we employed the Java Artifi-
cial Gene Network tool [38] to create artificial GRN systems with an average
regulatory connectivity of 3. We simulated each artificial GRN system un-
der two different experimental conditions over 16 time points (similar to the
Cantone data we used in the tool comparison) to generate two datasets (one
for training, one for validation) from each system.

In addition to the artificial GRN systems and data, we used two publicly
available gene expression datasets from sea urchin development studies [35,
36, 37]. Each sea urchin dataset contains the gene expression time-course
data from 176 genes measured at 48 time points. We used one dataset for
model inference, and the other for model validation. From each of the two
datasets, we randomly selected the same set of 66 genes and partitioned these
into six non-overlapping subsets containing 11 genes each. Based on these
data, we constructed four pairs of datasets for model training and validation.
Two full sets containing the same 66 genes each, two sets containing the same
33 genes each, two sets containing the same 22 genes each, and two sets
containing the same 11 genes each. Thus, we ended up with four training
datasets and four validation datasets, three of these pairs matching the size
(number of gene expression time series) of the artificial data (11, 22 and
33, respectively). Apart from the different training and validation data and
the swarm size (which was fixed to 500 PSO particles divided into 10 PSO
islands), the reverse-engineering conditions were identical to those employed
for the artificial GRN scenarios (Section 4.2).

For each scenario, we used both a random core assignment and structured
core assignment process allocation approaches as described below.

The second experimental condition was the number of PSO islands (i.e.
CPU cores). We used eight configurations with a different number of islands,
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namely 1, 2, 5, 10, 20, 50, 100 and 200 islands. The particle migration
pattern between islands is organized in a ring topology.

The third experimental condition was the type of resource allocation or
job scheduling protocol. We repeated all experiments with two protocols: the
random core assignment (RCA) protocol and the structured core assignment
(SCA) protocol. These protocols are implemented by the QCG middleware,
that is, they are part of components depicted in the bottom box labeled
Ezecution and Communication Environment/Tools in Figure 2. To choose
between the two protocols, the modeler must edit a QCG input file, which
describes the MultiGrain/MAPPER computing job (the executables, the in-
put and output files, directories, and other required settings). The RCA
approach allows the scheduler to automatically allocate each process to any
of the available cluster nodes. The main advantage of this protocol is its
short resource allocation time. Since the individual processes may run on
any core within the cluster, the jobs can be scheduled and started relatively
quickly. However, this also results in slower process-process communication
due to frequent communication between different nodes of the cluster. The
jobs rely more heavily on networked communication instead of the more
optimal intra-node communication (through shared memory). In the SCA
protocol, the user specifies the structure (topology) in which the cores should
be assigned to cluster nodes and CPU cores. This has the advantage of more
efficient communication by exploiting cache memory for communication be-
tween the processes that are allocated on a single processor /node. However,
the SCA protocol suffers from longer waiting times for resources, since the
processes have to be located on common nodes. Some time is needed to wait
for finishing jobs before the node is free to take new jobs. For the RCA
experiments, we were unable to execute 2-cluster scenarios with 200 PSO is-
lands. Due to the large number of processes that needed to be synchronized
across the two clusters, the scheduler failed to allocate the resources in a
timely manner and the MultiGrain/MAPPER jobs failed to start properly.
Similarly, for the SCA scenarios, we experienced large waiting times when
using advance reservation (created by the QCG Broker [42]) with complex
MultiGrain/MAPPER jobs. In order to ensure proper access to resources,
we obtained static reservations (provided by the Inula and Zeus administra-
tors) for 100 cores on each cluster and used these reservations for all the SCA
scenarios. However, this restricted the size of the jobs that we could execute
— we were unable to perform single-cluster MultiGrain/MAPPER tests with
200 PSO islands using the SCA allocation mode. Furthermore, the Zeus
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reservation offered us access to AMD Opteron nodes, but only to 16 cores
per node. This limited the size of the process allocations that we could use
for the SCA scenarios.

The final condition was the executing environment configuration we used.
We executed the MultiGrain/MAPPER reverse-engineering process in three
configurations involving two computing sites or clusters called Inula and Zeus.
In the first configuration, we allocated all PSO islands on Inula, in the second
all islands were allocated on Zeus, and in the third, the islands were allocated
equally (where possible) on both sites. The particular hardware details of
Inula and Zeus were as follows:

e Inula (cluster 1) was provided by the Poznan Supercomputing and Net-
working Center (Poznan, Poland). It consists of 68 nodes (24 CPU
cores per node, 2.40 GHz) based on an AMD Opteron 6234 architec-
ture with 48-64 GB of memory per node.

e Zeus (cluster 2) was made available by the Cyfronet Academic Com-
puter Centre (Krakow, Poland). Zeus has 1088 Intel nodes consisting
of 12 CPU cores per node clocked at 2.26 to 2.66 GHz, and 6267 AMD
Opteron nodes with 64 CPU cores per node clocked at 2.30 GHz. The
memory per node varies between 16 and 24 GB. Zeus offers a peak
performance of 120 teraflops.

Notice, the Zeus specification is considerably more powerful than that of
Inula.

To precisely control the computational load (total number of particle eval-
uations), we set the training error threshold to 0.001. Thus, each reverse-
engineering process would exhaust the maximal total number of particle eval-
uations dictated by the number of PSO islands, the number of particles per
island, and the number of PSO generations per island.

Each PSO island was populated with a constant PSO particle swarm size
of 50. The total number of PSO generations per island was 1000. In order
to increase the chance for a global error minimum, we allowed 3 particles
to migrate to a neighboring island every 25 generations (resulting in a total
of 40 migrations). The migration pattern followed a classical ring topology
(particles from the first island migrate to the second, and so on, and parti-
cles from the last island migrate to the first). Following the guidelines by
Pedersen [40], we determined the values of the remaining PSO parameters
empirically.
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We also recorded the training and validation errors for all reverse-engineered
models as normalized root-mean-square error (NRMSE1, NRMSE2) [39].
Thus, the error figures across the different artificial and real systems should
be directly comparable.

To account for the variability in the main benchmark indicators (errors,
wall time, throughput) due to the stochastic nature of the algorithm, we per-
formed 5 replicates for each experiment. The results of our computational
performance evaluation experiments with the artificial GRN system are sum-
marized in Table 2. Similar experiments we conducted with real biological
GRN systems and data are presented in Table 3. The wall time and through-
put figures in the tables represent the mean values from the 5 experimental
replicates.

Consider Table 2. The table shows the computational performance of
MultiGrain/MAPPER, in terms of wall time and throughput, for reverse-
engineering the data created from the three artificial GRN systems. A first
glance at the table suggests that the SCA protocol leads to higher perfor-
mance than the RCA protocol. This is likely due to the inherent nature
of the two approaches. RCA involves a random assignment of processes to
CPU cores on cluster nodes. Because of this, different processes from a sin-
gle job may end up distributed over various nodes in the cluster and thus
computation times may vary significantly from run to run due to the com-
munication overhead. This is due to the network interface linking the cluster
nodes; this type of communication is slower compared to the shared memory
communication between processor cores within the same node. This kind of
communication overhead typically leads to longer wall times of RCA jobs. As
the jobs get more complex (more PSO Islands), the communication overhead
is also expected to increase, because a larger number of processes increases
the chance that they will be allocated on different computing nodes on the
cluster. In contrast, the SCA protocol divides processes across one or more
process groups and each of the processes within a single group is guaranteed
to be executed on the same cluster node. This means that communication
within the groups is realized through shared memory and only the commu-
nication between the groups has to be realized via network transfer (less
performant). This reduces the communication overhead compared to the
RCA protocol and is likely to result in shorter wall times (and increased
throughput).

Figure 4 highlights a subset of the data shown in Table 2 with a constant
number of 50 PSO islands. Consider the wall time plots in the top row of
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Table 2: Wall time and throughput performance of MultiGrain/MAPPER based on arti-
ficial GRN systems and data.

RCA Protocol SCA Protocol

GRN | PSO Wall Time [s] Throughput [1/s] Wall Time [s] Throughput [1/s]

Genes|Islands| Inula Zeus Both | Inula Zeus Both |Inula Zeus Both | Inula Zeus Both
11 1 14 11 - 3609 4595 - 11 11 - 4470 4436 -
11 2 30 14 18 | 3384 9560 5714 | 11 12 12 | 8939 8300 8205
11 5 69 28 33 | 3614 19826 7913 | 13 15 14 | 19872 16696 18168
11 10 144 36 63 | 3489 15159 8509 | 14 16 17 | 35788 31667 30237
11 20 319 103 141 | 3144 10970 7127 | 16 19 21 [ 61765 52690 48139
11 50 763 240 291 | 3282 11824 8651 | 19 26 28 (133187 95055 88237
11 100 | 1449 656 707 | 3482 8741 7471 | 20 28 31 247870 178343 163441
11 200 | 2822 592 1206 | 3567 16968 8312 - - 44 - - 226062
22 1 40 32 - 1262 1674 - 30 33 - 1659 1526 -
22 2 81 47 40 | 1240 2290 2561 | 32 35 34 | 3108 2850 2979
22 5 179 128 102 | 1411 2153 2929 | 36 43 41 | 6882 5788 6121
22 10 437 226 163 | 1144 2518 3118 | 43 60 51 | 11537 8319 10008
22 20 787 228 370 | 1279 7630 2757 | 59 73 67 | 17014 13791 15488
22 50 [ 1890 595 852 | 1333 4802 2940 | 68 85 79 | 36646 29690 31624
22 100 | 3839 2203 1566 | 1307 4065 3220 | 73 92 89 | 68752 54615 56633
22 200 | 7011 3648 3180 | 1431 3038 3153 - - 112 - - 89501
33 1 115 74 - 438 719 - 71 71 - 708 705 -
33 2 194 110 117 | 521 974 913 79 87 78 | 1277 1154 1282
33 5 472 206 401 | 534 1339 659 93 125 92 | 2704 2036 2747
33 10 887 601 372 | 564 840 1412 | 115 180 139 | 4372 2869 3630
33 20 (2088 673 792 | 489 2401 1276 | 179 208 187 | 5608 4940 5398
33 50 | 4526 1322 1915| 554 2280 1317 | 210 270 224 | 11916 9283 11721
33 100 {10040 4376 3503 | 515 1471 1439 | 238 276 287 | 21058 18111 17931
33 200 |17760 10179 - 568 1522 - - - 315 - - 32348
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the figure. As expected, the wall times for larger GRN systems goes up with
the number of genes. This effect is much more pronounced in the RCA than
the SCA protocol. For all computing environment setups (Inula, Zeus, 2-
cluster), the wall times are considerably longer in the RCA compared to the
SCA protocol. Within the RCA protocol, the wall times on the Zeus cluster
are much shorter than those on the Inula cluster, and in the cross-cluster
setup, the wall times are still shorter than on the Inula cluster alone. The
throughput plots in the bottom row of Figure 4 show that SCA protocol
throughput (at least for a lower number of genes) is much higher than that
of the RCA protocol. Furthermore, the throughput increase with smaller
number of genes in the SCA protocol is much more pronounced than that in
the RCA protocol. The plots in Figure 4 also show an interesting seemingly
contradictory pattern. While Inula is clearly the slowest in terms of wall time
in the RCA protocol, Inula seems to outperform Zeus in terms of throughput
in the SCA protocol. This pattern is more pronounced for smaller number
of genes.

Figure 5 highlights a subset of the data with a constant number of 22
genes. Consider the wall time plots in the top row. We immediately notice
two things. First, the wall times produced with the RCA protocol are con-
siderably longer (at least for larger numbers of PSO islands) than those in
the SCA configuration. Second, the wall times increase in a roughly linear
fashion with the addition of PSO islands in RCA, and are roughly constant in
the SCA configuration. Because an increasing number of PSO islands means
a proportional increase of both load (number of particle fitness evaluations)
and resources (PSO islands corresponding to CPU cores), the latter indicates
good scalability whereas the former indicates poor scalability. This view of
scalability is corroborated in the throughput plots (bottom row of Figure 5).
As load and resources are increased in a proportional manner (increasing
number of PSO islands), the throughput in the SCA protocol increases ap-
proximately linearly (as one would expect in a system with good weak scal-
ability), whereas the throughput in the RCA protocol remains roughly con-
stant. So in our case, an ideal weak scalability scenario is one in which the
wall time remains constant and the throughput increases linearly with the
number of PSO islands. Recall, for each PSO island we allocate a CPU core.
This is clearly seen in the plots for the SCA protocol in Figure 5. For the
wall time plots, the ideal scalability line would be parallel to the x-axis and
pass through the point corresponding of 1 PSO island (or, if the previous is
not plotted, the point corresponding to the 2-island scenario). Similar to the
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Figure 4: Wall times and throughput (both on y-axes) dependent on number genes (11,
22, 33), resource allocation protocol (RCA, SCA), and computing environment (local,
distributed). Number of PSO islands constant at 50.
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Figure 5: Wall times and throughput (both on y-axes) dependent on number of PSO
islands (2, 5, 10, 20, 50, 100), resource allocation protocol (RCA, SCA), and computing
environment (local, distributed). Number of genes is constant at 22.

data with varying gene number (11 to 33) and constant PSO islands (50) in
Figure 4, we notice that within the RCA setup, Inula shows the longest wall
times, while in the SCA setup Inula seems to outperform the other config-
urations in terms of throughput. This pattern seems more pronounced for
scenarios involving a higher number of PSO islands.

Because many factors could potentially affect the performance in both
protocol setups, it is difficult to pinpoint the exact causes of performance
variation. The most likely reason for the lower performance of the RCA
protocol is the delay due to communication among the nodes over which
we randomly distribute the PSO islands. Some of the observed performance
patterns depend on some subtle aspects of the computing configuration (pro-
tocols, hardware) and the particle PSO configuration. For instance, for jobs
using the RCA allocation method, each island can be scheduled on any of
the available nodes, so in the worst case, all PSO island processes could end
up on a different node. This results in an increased communication latency.
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With the SCA jobs, however, we manually specify the allocation of processes
across computation nodes, which is likely to produce better communication
performance. The core allocation size was limited to 24 processes per node
for Inula, and 16 processes per node for Zeus (the latter was due to the spec-
ification of the reservations we obtained for SCA jobs). In order to achieve
the best possible performance, we distributed the total number of processes
for each job in allocations of sizes up to 24 processes on Inula and 16 pro-
cesses on Zeus. This led to a smaller number of process allocations on Inula,
especially for larger jobs (with a larger number of PSO islands). Fewer al-
locations means fewer communications across different cluster nodes, which
leads to a lower communication overhead in the case of Inula scenarios. Fi-
nally, another critical factor for the efficiency of the SCA scenarios was the
frequency of the CPU cores used to execute the MultiGrain/MAPPER com-
puting jobs. Although we used AMD nodes from both execution sites, the
Inula nodes contained CPU cores clocked at higher frequencies than those on
Zeus. These two factors are likely to have led to increased efficiency for the
SCA results on the Inula cluster.

In terms of training and validation errors of the GRN models that we
reverse-engineered from the data of the three artificial systems, the results
paint a much simpler picture. As expected, the model errors do not depend
on the type of process allocation protocol. However, the errors did show
a degree of dependence on the number of islands. The largest errors were
obtained by scenarios with only one or two PSO islands. The values then
decreased slightly, before stabilizing around a specific value. For the training
error, this value was 0.08 — 0.09 for 11-gene scenarios, 0.06 — 0.07 for 22-gene
scenarios and 0.10 for 33-gene scenarios.

However, we notice that the number of PSO islands that produced the
lowest training and validation errors seems to depend on the size of the GRN
that was reverse-engineered. Thus, for 11-gene scenarios, the lowest errors
were achieved with as little as 2 or 5 PSO islands. For 22-gene scenarios, the
optimal number of PSO islands was 10, while for 33-gene scenarios, the lowest
errors were achieved with 20 islands. This was expected, as the number of
PSO islands dictated the size of the total PSO swarm of particles (each PSO
island had a fixed size of 50 particles). As the size of the GRN increases,
the number of parameters also grows — the number of ANN parameters is
N(N + 3), where N is the number of genes. As the number of parameters
increases, larger PSO swarms are required in order to produce good results,
when the number of PSO iterations (and fitness evaluations) is kept constant.
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4.3. Efficiency in local and distributed scenarios: sea urchin data

In addition to the performance benchmarking on the three artificial GRN
systems, we also reverse-engineered three models from the sea urchin data [35,
36, 37] with 11, 22 and 33 gene expression data series, respectively, as well as
with the combined set of 66 data series. Apart from the different training and
validation data and the swarm size (500 PSO particles over 10 PSO islands),
the reverse-engineering conditions were identical to those employed for the
artificial GRN scenarios. We performed each scenario using both process
allocation methods (RCA, SCA) on the Inula cluster only. The results are
shown in Table 3.

Table 3: Wall time and throughput performance of MultiGrain/MAPPER based on real
gene-expression data (sea urchin development). Superior performance figures are high-
lighted in bold.

GRN | PSO RCA Protocol (Inula) SCA Protocol (Inula)
Genes | Islands| Wall Time [s]  Throughput [1/s] | Wall Time [s]  Throughput [1/s]
11 10 392 1279 125 8222
22 10 942 536 182 3807
33 10 1707 297 299 1985
66 10 7989 64 1426 360

The results obtained from the real biological data (sea urchin) paint a
similar picture as those of the artificial GRN data. The wall times were
larger than the corresponding values for artificial data (i.e. for 10-island
scenarios). However, this was to be expected, as the real datasets that we
used here contained a larger number of time points (48) compared to the
artificial datasets (16). As the number of time points grows, the fitness
evaluator needs to perform more computations as the ODE solver needs to
estimate additional data points.

Nevertheless, we noticed similar “trends” with the real data results in
terms of the RCA and SCA protocols. Wall times for the RCA protocol were
approximately three times larger than for the SCA protocol, when reverse-
engineering 11-gene GRNs. This value grew to a 7-fold difference for the
66-gene GRN. The throughput was consistenly 6 or 7 times higher for the
SCA scenarios than for RCA, regardless of the GRN size. Finally, training
and validation errors (not shown in the table) were unaffected by the choice
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of allocation protocol. However, they depended on the GRN dataset that
was reverse-engineered.

4.4. Efficiency results summary for both artificial and sea urchin data

The computing performance assessment of MultiGrain/MAPPER revealed
a number of interesting insights. The main computational performance re-
sults are summarized in Table 4. What is not shown in the table is the
observation that an increase of the number of PSO islands beyond 10 does
not lead to a substantial improvement of training and validation errors on
artificial GRN systems. This is the reason why we used 10 PSO islands in
the performance evaluation with the sea urchin data.

Table 4: Summary of main computational performance characteristics of Multi-
Grain/MAPPER.

A: Absolute Performance at Constant System Size and PSO Islands

Constant Number of Genes/Islands RCA SCA
Site  Organism | Genes Islands WT [s] TP [1/s] WT [s] TP [1/s]
Inula Artificial 22 10 437 1144 43 11537
Inula Sea Urchin 22 10 942 536 182 3807
Zeus Atrtificial 22 10 226 2518 60 8319
B: Scaling Performace Dependent on Incresing System Size and PSO Islands
Increasing Number of Genes/Islands RCA SCA
Site  Organism | Genes Islands WTSF TPSF WTSF TPSF
Inula Artificial 22 5to 50 10.572 0.944 1.879 5.325
Inula Artificial | 11to 33 10 6.171 0.162 8.186 0.122
Inula Sea Urchin| 11to 33 10 4.355 0.232 2.392 0.241
Zeus Artificial 22 5to 50 2.887 2.231 1.879 5.130
Zeus Atrtificial | 11to 33 10 16.511 0.055 11.367 0.091

WT & TP: Absolute wall times and throghputs for 22 genes and 10 PSO islands.
WTSF & TPSF: Wall time & throughput scale factors from 11 to 33 genes & 5 to 50 PSO islands.
RCA & SCA: Random and structured core assignment approach, respectively.

Consider the upper panel labeled A in Table 4. It shows the absolute wall
times and throughput figures based on 22-gene systems on 10 PSO islands.
The gene size of 22 genes is chosen as a medium-complexity GRN system,
and the 10 PSO islands are chosen, as explained, because errors did not
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show a great improvement above 10 PSO islands. The figures demonstrate
the superiority of the SCA over the RCA protocol. The RCA wall times are
by a factor of 3.76 to 10.14 longer than the SCA wall times, and the SCA
throughput is by a factor 3.30 to 10.08 higher than those of the RCA protocol.
Clearly, this is quite an interesting result. Future large-scale GRN model
reverse-engineering should take these insights into account and consider to
adopt a resource allocation strategies similar to SCA.

The lower panel B in Table 4 summarizes MultiGrain/MAPPER’s per-
formance characteristics in response to increasing problem size (number of
genes) and increasing number of PSO islands. Bold figures highlight the pro-
tocol with the better performance (short wall time, higher throughput). The
figures in panel B show scale factors of wall time and throughput (not abso-
lute values) figures based on varying the number of genes/PSO islands from
a smaller to a larger number. The wall time scale factor (WTSF') describes
the factor by which the wall time increases as we go from 11 to 33 genes and
from 5 to 50 PSO islands, respectively. The throughput scale factor (TPSF)
describes the factor by which the throughput increases as we go from 11 to
33 genes and from 5 to 50 PSO islands, respectively.

First, we look at the increase of the number of genes from 11 to 33 with
a fixed number of 10 PSO islands (rows 2, 3 and 5 in panel B). Notice that
increasing the number of genes from 11 to 33 corresponds to a 7.71-fold in-
crease in the number of model parameters that need to be optimized. The
number of parameters in the ANN rate law shown in Equation (1) grows
with N(N + 3), where N is the number of genes in the GRN system. We
do not observe a clear difference between the two protocols. For the In-
ula/artifical data combination, the WTSF and TPSF for RCA are slightly
better than SCA, whereas for the Inula/sea urchin data and Zeus/artificial
data combinations the scale factors are slightly in favor of the SCA protocol.

Second, we look at the increase of the number of PSO islands from 5 to
50 with a constant number of 22 genes in the GRN system (rows 1 and 3
in panel B). Increasing the number of PSO islands from 5 to 50 corresponds
to a 10-fold increase of work load (number of particle fitness evaluations
that need to be performed) and resources (number of CPU cores that are
being used). When we increase the number of PSO islands by a factor of
10, we should see a TPSF close to 1 if the system has good scalability. For
the RCA protocol, we observe a TPSFEF = 0.944 for the Inula cluster and
TPSF = 2.231 for Zeus. The SCA protocol TPSF are approximately 5 for
both protocols. So this corresponds to a kind of superlinear scalability. This
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means that MultiGrain/MAPPER is likely to scale very well indeed for larger
problems where we would need to increase the PSO islands to better explore
the large parameter space. Overall, MultiGrain/MAPPER maps the multi-
swarm PSO algorithm to the MAPPER distributed (multiscale) computing
model. This solution seems to have very good scalability properties, when
used with the right resource allocation protocol.

5. Conclusion

Modeling and simulation of complex biological systems is playing an in-
creasingly important role in systems biology research. As more and more
complex biological phenomena are being tackled, the need to capture and
model information on multiple levels of biological organization grows. Hence,
multiscale modeling and simulation approaches in biology are on the rise [43,
44]. The majority of current multiscale modeling and simulation solutions
in the life sciences are based on ad hoc implementations. Some of the key
challenges of these applications include the access and use of large-scale com-
puting resources, and the development, deployment and execution of models
and simulations consisting of multiple coupled sub-models [3, 44, 1].

Based on the MAPPER suite of multiscale modeling and simulation solu-
tions [3, 5, 6], MultiGrain/MAPPER has been designed to tackle the compu-
tational challenges of large-scale GRN model modeling and simulation tasks.
In particular, MultiGrain/MAPPER realizes a distributed computing solu-
tion to the problem of reverse-engineering GRN models from gene-expression
data. The solution is based on a distributed multi-swarm (multi-island) parti-
cle swarm optimization algorithm that we implemented, where PSO islands
are mapped to CPU cores. In this paper, we demonstrated that Multi-
Grain/MAPPER GRN model reverse-engineering performance (in terms of
training and validation error of the inferred models) is equal or better than
those of state-of-the-art modeling and simulation tools 1. We also evalu-
ated the MultiGrain/MAPPER in terms of its computational performance
based on larger GRN systems and varying computing environment dimen-
sions (number of PSO islands, resource allocation protocols, and cluster con-
figurations). In particular, we investigated how the reverse-engineering per-
formance varies under two different research allocation protocols: the ran-
dom core assignment (RCA) protocol, and the structured core assignment
(SCA) protocol. The former allocates resources relatively quickly, but typ-
ically leads to suboptimal process-process communication, while the latter
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is slower at allocation time but can take advantage of fast process-process
communication links. We demonstrated that under the SCA protocol in par-
ticular, MultiGrain/MAPPER can produce superlinear speedup for larger
reverse-engineering problems (see Tables 2 and 4).

MultiGrain/MAPPER components are implemented in Java, but Multi-
Grain/MAPPER takes advantage of various components, including those
from the MAPPER stack tools and components [3, 1, 45, 46, 1, 47, 48, 49].
These components include user-friendly workflow editors and many other
features that are beyond the scope of this article.

We envisage that future multiscale modeling and simulation challenges
will involve the decomposition of a larger GRN system into modules of sub-
systems. Some of these sub-systems may operate on different scales (par-
ticularly time scales). By design, MultiGrain/MAPPER should be able to
model such multiscale GRN systems.
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