49 research outputs found

    Random-phase approximation and its applications in computational chemistry and materials science

    Full text link
    The random-phase approximation (RPA) as an approach for computing the electronic correlation energy is reviewed. After a brief account of its basic concept and historical development, the paper is devoted to the theoretical formulations of RPA, and its applications to realistic systems. With several illustrating applications, we discuss the implications of RPA for computational chemistry and materials science. The computational cost of RPA is also addressed which is critical for its widespread use in future applications. In addition, current correction schemes going beyond RPA and directions of further development will be discussed.Comment: 25 pages, 11 figures, published online in J. Mater. Sci. (2012

    Alternative Functions of Core Cell Cycle Regulators in Neuronal Migration, Neuronal Maturation, and Synaptic Plasticity

    Get PDF
    Recent studies have demonstrated that boundaries separating a cycling cell from a postmitotic neuron are not as concrete as expected. Novel and unique physiological functions in neurons have been ascribed for proteins fundamentally required for cell cycle progression and control. These “core” cell cycle regulators serve diverse postmitotic functions that span various developmental stages of a neuron, including neuronal migration, axonal elongation, axon pruning, dendrite morphogenesis, and synaptic maturation and plasticity. In this review, we detail the nonproliferative postmitotic roles that these cell cycle proteins have recently been reported to play, the significance of their expression in neurons, mechanistic insight when available, and future prospects.National Institutes of Health (U.S.) (PO1 grant AG27916)National Institutes of Health (U.S.) (RO1 grant NS51876

    Falling in love Why We Choose The Lover We Choose

    No full text
    vi, 283hal.: il.; 23cm x 16c

    Experiencing social psychology : readings and projects

    No full text
    xv, 386 p. ; 28 cm
    corecore