269 research outputs found

    An Intertidal Sea Star Adjusts Thermal Inertia to Avoid Extreme Body Temperatures

    Get PDF
    The body temperature of ectotherms is influenced by the interaction of abiotic conditions, morphology, and behavior. Although organisms living in different thermal habitats may exhibit morphological plasticity or move from unfavorable locations, there are few examples of animals adjusting their thermal properties in response to short-term changes in local conditions. Here, we show that the intertidal sea star Pisaster ochraceus modulates its thermal inertia in response to prior thermal exposure. After exposure to high body temperature at low tide, sea stars increase the amount of colder than-air fluid in their coelomic cavity when submerged during high tide, resulting in a lower body temperature during the subsequent low tide. Moreover, this buffering capacity is more effective when seawater is cold during the previous high tide. This ability to modify the volume of coelomic fluid provides sea stars with a novel thermoregulatory backup when faced with prolonged exposure to elevated aerial temperatures

    Natural History Note An Intertidal Sea Star Adjusts Thermal Inertia to Avoid Extreme Body Temperatures

    Get PDF
    abstract: The body temperature of ectotherms is influenced by the interaction of abiotic conditions, morphology, and behavior. Although organisms living in different thermal habitats may exhibit morphological plasticity or move from unfavorable locations, there are few examples of animals adjusting their thermal properties in response to short-term changes in local conditions. Here, we show that the intertidal sea star Pisaster ochraceus modulates its thermal inertia in response to prior thermal exposure. After exposure to high body temperature at low tide, sea stars increase the amount of colderthan-air fluid in their coelomic cavity when submerged during high tide, resulting in a lower body temperature during the subsequent low tide. Moreover, this buffering capacity is more effective when seawater is cold during the previous high tide. This ability to modify the volume of coelomic fluid provides sea stars with a novel thermoregulatory "backup" when faced with prolonged exposure to elevated aerial temperatures

    Cheating the locals: invasive mussels steal and benefit from the cooling effect of indigenous mussels

    Get PDF
    The indigenous South African mussel Perna perna gapes during periods of aerial exposure to maintain aerobic respiration. This behaviour has no effect on the body temperatures of isolated individuals, but when surrounded by conspecifics, beneficial cooling effects of gaping emerge. It is uncertain, however, whether the presence of the invasive mussel Mytilus galloprovincialis limits the ability of P. perna for collective thermoregulation. We investigated whether varying densities of P. perna and M. galloprovincialis influences the thermal properties of both natural and artificial mussel beds during periods of emersion. Using infrared thermography, body temperatures of P. perna within mixed artificial beds were shown to increase faster and reach higher temperatures than individuals in conspecific beds, indicating that the presence of M. galloprovincialis limits the group cooling effects of gaping. In contrast, body temperatures of M. galloprovincialis within mixed artificial mussel beds increased slower and exhibited lower temperatures than for individuals in beds comprised entirely of M. galloprovincialis. Interestingly, differences in bed temperatures and heating rates were largely dependent on the size of mussels, with beds comprised of larger individuals experiencing less thermal stress irrespective of species composition. The small-scale patterns of thermal stress detected within manipulated beds were not observed within naturally occurring mixed mussel beds. We propose that small-scale differences in topography, size-structure, mussel bed size and the presence of organisms encrusting the mussel shells mask the effects of gaping behaviour within natural mussel beds. Nevertheless, the results from our manipulative experiment indicate that the invasive species M. galloprovincialis steals thermal properties as well as resources from the indigenous mussel P. perna. This may have significant implications for predicting how the co-existence of these two species may change as global temperatures continue to rise

    Microclimate buffering and thermal tolerance across elevations in a tropical butterfly

    Get PDF
    Microclimatic variability in tropical forests plays a key role in shaping species distributions and their ability to cope with environmental change, especially for ectotherms. Nonetheless, currently available climatic datasets lack data from the forest interior and, furthermore, our knowledge of thermal tolerance among tropical ectotherms is limited. We therefore studied natural variation in the microclimate experienced by tropical butterflies in the genus Heliconius across their Andean range in a single year. We found that the forest strongly buffers temperature and humidity in the understory, especially in the lowlands where temperatures are more extreme. There were systematic differences between our yearly records and macroclimate databases (WorldClim2), with lower interpolated minimum temperatures and maximum temperatures higher than expected. We then assessed thermal tolerance of ten Heliconius butterfly species in the wild and showed that populations at high elevations had significantly lower heat tolerance than those at lower elevations. However, when we reared populations of the widespread H. erato from high and low elevations in a common-garden environment, the difference in heat tolerance across elevations was reduced, indicating plasticity in this trait. Microclimate buffering is not currently captured in publicly available datasets but could be crucial for enabling upland shifting of species sensitive to heat such as highland Heliconius. Plasticity in thermal tolerance may alleviate the effects of global warming on some widespread ectotherm species, but more research is needed to understand the long-term consequences of plasticity on populations and species

    Simulation of multi-platform LiDAR for assessing total leaf area in tree crowns

    Get PDF
    LiDAR (Light Detection and Ranging) technology has been increasingly implemented to assess the biophysical attributes of forest canopies. However, LiDAR-based estimation of tree biophysical attributes remains difficult mainly due to the occlusion of vegetative elements in multi-layered tree crowns. In this study, we developed a new algorithm along with a multiple-scan methodology to analyse the impact of occlusion on LiDAR-based estimates of tree leaf area. We reconstructed five virtual tree models using a computer graphic-based approach based on in situ measurements from multiple tree crowns, for which the position, size, orientation and area of all leaves were measured. Multi-platform LiDAR simulations were performed on these 3D tree models through a point-line intersection algorithm. An approach based on the Delaunay triangulation algorithm with automatic adaptive threshold selection was proposed to construct the scanned leaf surface from the simulated discrete LiDAR point clouds. In addition, the leaf area covered by laser beams in each layer was assessed in combination with the ratio and number of the scanned points. Quantitative comparisons of LiDAR scanning for the occlusion effects among various scanning approaches, including fixed-position scanning, multiple terrestrial LiDAR scanning and airborne-terrestrial LiDAR cross-scanning, were assessed on different target trees. The results showed that one simulated terrestrial LiDAR scan alongside the model tree captured only 25–38% of the leaf area of the tree crown. When scanned data were acquired from three simulated terrestrial LiDAR scans around one tree, the accuracy of the leaf area recovery rate reached 60–73% depending on the leaf area index, tree crown volume and leaf area density. When a supplementary airborne LiDAR scanning was included, occlusion was reduced and the leaf area recovery rate increased to 72–90%. Our study provides an approach for the measurement of total leaf area in tree crowns from simulated multi-platform LiDAR data and enables a quantitative assessment of occlusion metrics for various tree crown attributes under different scanning strategies

    Riparian thermal conditions across a mixed rural and urban landscape

    Get PDF
    Riparian corridors have the potential to function as thermal refuges, moderating extremes of local temperature variation. However, although demonstrated at individual sites, and over short periods, the consistency of this effect at wider temporal and spatial scales is poorly understood. The aim of this study is to assess the temperature differences between riparian corridors and adjacent non-riparian habitats and to explore the influence of environmental characteristics on these differences. Air temperature was monitored hourly at 20 paired locations (riparian and non-riparian) for two consecutive years. Urban index and canopy cover were characterised by calculating the percentage of impervious surface area and tree canopy cover within a 100 m radius from the centre of each sampling site. Canopy cover reduced summer thermal stresses in both urban and rural areas whereas high urban index tended to increase the daily thermal indices. Rivers had a significant mitigating effect on the urban riparian thermal condition, particularly in extreme hot weather. Riparian corridors were generally 1 °C cooler than non-riparian locations in summer and could be up to 3 °C cooler at some sites in extreme hot weather. Furthermore, riparian corridors at some sites were warmer than non-riparian locations in winter. These findings suggest that the proximity of rivers can modify riparian thermal environments, potentially reducing the heat stress of riparian corridors across landscapes

    Predicting non-target impacts:

    Get PDF
    Biocontrol of invasive alien weeds has produced great benefits, but concerns over undesirable impacts on non-target plants and/or indirect interactions between biocontrol agents and other biota impede the implementation of biocontrol in some countries. Although great strides have been made, continuing uncertainties predicting the realized host range of candidate agents is probably resulting in some being erroneously rejected due to overestimation of risk. Further refinement of host-range testing protocols is therefore desirable. Indirect interactions are inherently harder to predict, and the risk of both direct and indirect non-target impacts may change over time due to biocontrol agents evolving or expanding their range under climate change. Future research directions to better understand the risk of non-target impacts over time are discussed
    • …
    corecore