40 research outputs found

    Digital Tide Tables: A Necessity for Navigation in the Electronic Age

    Get PDF
    Tide Tables, produced by the relevant Hydrographic Offices, are a mandatory complement to navigational charts for any vessel sailing in tidal waters, i.e. in all the world's oceans and almost all of its seas. Until recently, they were almost exclusively in a printed form. However, the arrival and widespread use of personal computers is changing the status quo. Several digital tidal prediction programs of varying accuracy have appeared on the market, and Hydrographic Offices are being pressured to move into the electronic world as well. To date, only a few countries produce digital versions of authorized Tide Tables, with various levels of sophistication. The introduction of the Electronic Chart Display and Information System (ECDIS) is now emphasizing the need for digital tidal data, with more Hydrographic Offices expected to comply. Those mariners using electronic navigational charts now require digital tidal predictions as a companion to the digital ECDIS.Graphical representation of traditionally numeric tidal data is now practically "de rigueur" for Digital Tide Tables. With predictions for many secondary ports available with accuracy comparable to standard ports, the whole concept of "secondary" ports is challenged. Early versions of Digital Tide Tables had, at best, a relatively simple user menu with a listing of ports for which predictions were available. This is also changing, as Australia has already introduced a master geographical interface, showing the locations of available ports via several larger scale index charts.The second generation of Digital Tide Tables will include a "seamless" incorporation in the ECDIS to provide authorized (i.e. legal) tidal predictions on demand for real-time navigation. It is anticipated that the ECDIS community will enhance this further with spatial overlays and access to shore-based modelling of tidal heights and streams, as well as real-time water level measurements, where available

    Drifting inwards in protoplanetary discs I Sticking of chondritic dust at increasing temperatures

    Full text link
    Sticking properties rule the early phases of pebble growth in protoplanetary discs in which grains regularly travel from cold, water-rich regions to the warm inner part. This drift affects composition, grain size, morphology, and water content as grains experience ever higher temperatures. In this study we tempered chondritic dust under vacuum up to 1400 K. Afterwards, we measured the splitting tensile strength of millimetre-sized dust aggregates. The deduced effective surface energy starts out as γe=0.07J/m2\gamma_e = 0.07\,\rm J/m^2. This value is dominated by abundant iron-oxides as measured by M\"ossbauer spectroscopy. Up to 1250 K, γe\gamma_e continuously decreases by up to a factor five. Olivines dominate at higher temperature. Beyond 1300 K dust grains significantly grow in size. The γe\gamma_e no longer decreases but the large grain size restricts the capability of growing aggregates. Beyond 1400 K aggregation is no longer possible. Overall, under the conditions probed, the stability of dust pebbles would decrease towards the star. In view of a minimum aggregate size required to trigger drag instabilities it becomes increasingly harder to seed planetesimal formation closer to a star

    10 raons per triar la UAB

    Get PDF
    International audienceDetergent-resistant membranes (DRMs) represent specialized membrane domains resistant to detergent extraction, which may serve to segregate proteins in a specific environment in order to improve their function. Segregation of glycosylphosphatidylinositol-anchored proteins (GPI-APs) in DRMs has been shown to be involved in their sorting to the apical membrane in polarized epithelial cells. Nonetheless, we have shown that both apical and basolateral GPI-APs associate with DRMs. In this report we investigated the lipid composition of DRMs associated with an apical and a basolateral GPI-AP. We found that apical and basolateral DRMs contain the same lipid species although in different ratios. This specific lipid ratio is maintained after mixing the cells before lysis indicating that DRMs maintain their identity after Triton extraction

    Listeriolysin O Causes ENaC Dysfunction in Human Airway Epithelial Cells.

    Get PDF
    Pulmonary permeability edema is characterized by reduced alveolar Na⁺ uptake capacity and capillary barrier dysfunction and is a potentially lethal complication of listeriosis. Apical Na⁺ uptake is mainly mediated by the epithelial sodium channel (ENaC) and initiates alveolar liquid clearance. Here we examine how listeriolysin O (LLO), the pore-forming toxin of Listeria monocytogenes, impairs the expression and activity of ENaC. To that purpose, we studied how sub-lytic concentrations of LLO affect negative and positive regulators of ENaC expression in the H441 airway epithelial cell line. LLO reduced expression of the crucial ENaC-α subunit in H441 cells within 2 h and this was preceded by activation of PKC-α, a negative regulator of the channel\u27s expression. At later time points, LLO caused a significant reduction in the phosphorylation of Sgk-1 at residue T256 and of Akt-1 at residue S473, both of which are required for full activation of ENaC. The TNF-derived TIP peptide prevented LLO-mediated PKC-α activation and restored phospho-Sgk-1-T256. The TIP peptide also counteracted the observed LLO-induced decrease in amiloride-sensitive Na⁺ current and ENaC-α expression in H441 cells. Intratracheally instilled LLO caused profound pulmonary edema formation in mice, an effect that was prevented by the TIP peptide; thus indicating the therapeutic potential of the peptide for the treatment of pore-forming toxin-associated permeability edema

    Carnitine reduces the lipoperoxidative damage of the membrane and apoptosis after induction of cell stress in experimental glaucoma

    Get PDF
    The pathological damage caused by glaucoma is associated to a high intraocular pressure. The ocular hypertone is most likely due to a defective efflux of aqueous humor from the anterior chamber of the eye. Ocular hypertension causes apoptotic death of retinal ganglion cells and overexpression of molecular markers typical of cell stress response and apoptosis. In this work, we report on the neuroprotective, antiapoptotic and antioxidant action of a natural substance, -carnitine. This compound is known for its ability to improve the mitochondrial performance. We analyze a number of cellular and molecular markers, typical of ocular hypertension and, in general, of the cell stress response. In particular, -carnitine reduces the expression of glial fibrillary acidic protein, inducible nitric oxide synthase, ubiquitin and caspase 3 typical markers of cell stress. In addition, the morphological analysis of the optic nerve evidenced a reduction of the pathological excavation of the optic disk. This experimental hypertone protocol induces a severe lipoperoxidation, which is significantly reduced by -carnitine. The overall interpretation is that mortality of the retinal cells is due to membrane damage

    The unfolded protein response in immunity and inflammation.

    Get PDF
    The unfolded protein response (UPR) is a highly conserved pathway that allows the cell to manage endoplasmic reticulum (ER) stress that is imposed by the secretory demands associated with environmental forces. In this role, the UPR has increasingly been shown to have crucial functions in immunity and inflammation. In this Review, we discuss the importance of the UPR in the development, differentiation, function and survival of immune cells in meeting the needs of an immune response. In addition, we review current insights into how the UPR is involved in complex chronic inflammatory diseases and, through its role in immune regulation, antitumour responses.This work was supported by the Netherlands Organization for Scientific Research Rubicon grant 825.13.012 (J.G.); US National Institutes of Health (NIH) grants DK044319, DK051362, DK053056 and DK088199, and the Harvard Digestive Diseases Center (HDDC) grant DK034854 (R.S.B.); National Institutes of Health grants DK042394, DK088227, DK103183 and CA128814 (R.J.K.); and European Research Council (ERC) Starting Grant 260961, ERC Consolidator Grant 648889, and the Wellcome Trust Investigator award 106260/Z/14/Z (A.K.).This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nri.2016.6

    Defective ATG16L1-mediated removal of IRE1α drives Crohn's disease-like ileitis.

    Get PDF
    ATG16L1T300A^{T300A}, a major risk polymorphism in Crohn's disease (CD), causes impaired autophagy, but it has remained unclear how this predisposes to CD. In this study, we report that mice with Atg16l1 deletion in intestinal epithelial cells (IECs) spontaneously develop transmural ileitis phenocopying ileal CD in an age-dependent manner, driven by the endoplasmic reticulum (ER) stress sensor IRE1α. IRE1α accumulates in Paneth cells of Atg16l1ΔIEC^{ΔIEC} mice, and humans homozygous for ATG16L1T300A^{T300A} exhibit a corresponding increase of IRE1α in intestinal epithelial crypts. In contrast to a protective role of the IRE1β isoform, hyperactivated IRE1α also drives a similar ileitis developing earlier in life in Atg16l1;Xbp1ΔIEC^{ΔIEC} mice, in which ER stress is induced by deletion of the unfolded protein response transcription factor XBP1. The selective autophagy receptor optineurin interacts with IRE1α, and optineurin deficiency amplifies IRE1α levels during ER stress. Furthermore, although dysbiosis of the ileal microbiota is present in Atg16l1;Xbp1ΔIEC^{ΔIEC} mice as predicted from impaired Paneth cell antimicrobial function, such structural alteration of the microbiota does not trigger ileitis but, rather, aggravates dextran sodium sulfate-induced colitis. Hence, we conclude that defective autophagy in IECs may predispose to CD ileitis via impaired clearance of IRE1α aggregates during ER stress at this site.This study was supported by the European Research Council under the European Community’s Seventh Framework Program (grant FP7/2007-2013)/ERC, agreement no. 260961 to A. Kaser and grant HORIZON2020/ERC, agreement no. 648889 to A. Kaser), the Wellcome Trust (Investigator Award 106260/Z/14/Z to A. Kaser and Principal Research Fellowship 2008/Z/16/Z to D. Ron), the Cambridge Biomedical Research Centre (A. Kaser), a Medical Research Council PhD for clinicians training fellowship (grant MR/N001893/1 to J. Bhattacharyya), fellowships from the European Crohn’s and Colitis Organization (M. Tschurtschenthaler and T.E. Adolph), the Research Training Group Genes, Environment, and Inflammation supported by the Deutsche Forschungsgemeinschaft (grant RTG 1743/1 to P. Rosenstiel), the SFB877 subproject B9 and CLVIII ExC 306 Inflammation at Interfaces (P. Rosenstiel), and the National Institutes of Health (grants DK044319, DK051362, DK053056, and DK088199 to the Harvard Digestive Diseases Center and grant DK0034854 to R.S. Blumberg)

    The Curie line in protoplanetary disks and the formation of Mercury-like planets

    No full text
    In laboratory experiments, we heated chondritic material up to 1400 K in a hydrogen atmosphere. Mössbauer spectroscopy and magnetometry reveal that, at high temperatures, metallic iron forms from silicates. The transition temperature is about 1200 K after 1 h of tempering, likely decreasing to about 1000 K for longer tempering. This implies that in a region of high temperatures within protoplanetary disks, inward drifting solids will generally be a reservoir of metallic iron. Magnetic aggregation of iron-rich matter then occurs within the magnetic field of the disk. However, the Curie temperature of iron, 1041 K, is a rather sharp discriminator that separates the disk into a region of strong magnetic interactions of ferromagnetic particles and a region of weak paramagnetic properties. We call this position in the disk the Curie line. Magnetic aggregation will be turned on and off here. On the outer, ferromagnetic side of the Curie line, large clusters of iron-rich particles grow and might be prone to streaming instabilities. To the inside of the Curie line, these clusters dissolve, but that generates a large number density that might also be beneficial for planetesimal formation by gravitational instability. One way or the other, the Curie line may define a preferred region for the formation of iron-rich bodies

    Drifting inwards in protoplanetary discs

    No full text
    In previous laboratory experiments, we measured the temperature dependence of sticking forces between micrometer grains of chondritic composition. The data showed a decrease in surface energy by a factor ~5 with increasing temperature. Here, we focus on the effect of surface water on grains. Under ambient conditions in the laboratory, multiple water layers are present. At the low pressure of protoplanetary discs and for moderate temperatures, grains likely only hold a monolayer. As dust drifts inwards, even this monolayer eventually evaporates completely in higher temperature regions. To account for this, we measured the tensile strength for the same chondritic material as was prepared and measured under normal laboratory conditions in our previous work, but now introducing two new preparation methods: drying dust cylinders in air (dry samples), and heating dust pressed into cylinders in vacuum (super-dry samples). For all temperatures up to 1000 K, the data of the dry samples are consistent with a simple increase in the sticking force by a factor of ~10 over wet samples. Up to 900 K super-dry samples behave like dry samples. However, the sticking forces then exponentially increase up to another factor ~100 at about 1200 K. The increase in sticking from wet to dry extends a trend that is known for amorphous silicates to multimineral mixtures. The findings for super-dry dust imply that aggregate growth is boosted in a small spatial high-temperature region around 1200 K, which might be a sweet spot for planetesimal formation
    corecore