262 research outputs found

    Intensive human land uses negatively affect vertebrate functional diversity

    Get PDF
    Land-use change is the leading driver of global biodiversity loss thus characterising its impacts on the functional structure of ecological communities is an urgent challenge. Using a database describing vertebrate assemblages in different land uses, we assess how the type and intensity of land use affect the functional diversity of vertebrates globally. We find that human land uses alter local functional structure by driving declines in functional diversity, with the strongest effects in the most disturbed land uses (intensely used urban sites, cropland and pastures), and among amphibians and birds. Both tropical and temperate areas experience important functional losses, which are only partially offset by functional gains. Tropical assemblages are more likely to show decreases in functional diversity that exceed those expected from species loss alone. Our results indicate that land-use change non-randomly reshapes the functional structure of vertebrate assemblages, raising concerns about the continuation of ecological processes sustained by vertebrates

    Dietary niche and the evolution of cranial morphology in birds

    Get PDF
    Cranial morphology in birds is thought to be shaped by adaptive evolution for foraging performance. This understanding of ecomorphological evolution is supported by observations of avian island radiations, such as Darwin's finches, which display rapid evolution of skull shape in response to food resource availability and a strong fit between cranial phenotype and trophic ecology. However, a recent analysis of larger clades has suggested that diet is not necessarily a primary driver of cranial shape and that phylogeny and allometry are more significant factors in skull evolution. We use phenome-scale morphometric data across the breadth of extant bird diversity to test the influence of diet and foraging behaviour in shaping cranial evolution. We demonstrate that these trophic characters are significant but very weak predictors of cranial form at this scale. However, dietary groups exhibit significantly different rates of morphological evolution across multiple cranial regions. Granivores and nectarivores exhibit the highest rates of evolution in the face and cranial vault, whereas terrestrial carnivores evolve the slowest. The basisphenoid, occipital, and jaw joint regions have less extreme differences among dietary groups. These patterns demonstrate that dietary niche shapes the tempo and mode of phenotypic evolution in deep time, despite a weaker than expected form–function relationship across large clades

    Loss of functional diversity through anthropogenic extinctions of island birds is not offset by biotic invasions

    Get PDF
    Human impacts reshape ecological communities through the extinction and introduction of species. The combined impact of these factors depends on whether non-native species fill the functional roles of extinct species, thus buffering the loss of functional diversity. This question has been difficult to address, because comprehensive information about past extinctions and their traits is generally lacking. We combine detailed information about extinct, extant, and established alien birds to quantify historical changes in functional diversity across nine oceanic archipelagos. We found that alien species often equal or exceed the number of anthropogenic extinctions yet apparently perform a narrower set of functional roles as current island assemblages have undergone a substantial and ubiquitous net loss in functional diversity and increased functional similarity among assemblages. Our results reveal that the introduction of alien species has not prevented anthropogenic extinctions from reducing and homogenizing the functional diversity of native bird assemblages on oceanic archipelagos

    Hyperon-Nucleon Final State Interaction in Kaon Photoproduction of the Deuteron

    Get PDF
    Final state hyperon-nucleon interaction in strangeness photoproduction of the deuteron is investigated making use of the covariant reaction formalism and the P-matrix approach to the YN system. Remarkably simple analytical expression for the amplitude is obtained. Pronounced effects due to final state interaction are predicted including the manifestation of the 2.13 GeV resonance.Comment: LaTeX, 13 page

    The macroecological dynamics of species coexistence in birds

    Get PDF
    This research was funded by the Netherlands Organisation for Scientific Research VENI grant 863.13.003 (to A.L.P.), NASA Biodiversity grant NNX11AP72G and NSF grants NSF DBI 1262600, DBI 0960550 and DEB 1026764 (to W.J.), the Oxford Clarendon Fund and US-UK Fulbright Commission (to C.S.), and the John Fell Fund and NERC grant NE/I028068/1 (to J.A.T.).Ecological communities are assembled from the overlapping of species in geographic space, but the mechanisms facilitating or limiting such overlaps are difficult to resolve. Here, we combine phylogenetic, morphological and environmental data to model how multiple processes regulate the origin and maintenance of geographic range overlap across 1,115 pairs of avian sister species globally. We show that coexistence cannot be adequately predicted by either dispersal-assembly (that is, biogeographic) models or niche-assembly models alone. Instead, our results overwhelmingly support an integrated model with different assembly processes dominating at different stages of coexistence. The initial attainment of narrow geographic overlap is dictated by intrinsic dispersal ability and the time available for dispersal, whereas wider coexistence is largely dependent on niche availability, increasing with ecosystem productivity and divergence in niche-related traits, and apparently declining as communities become saturated with species. Furthermore, although coexistence of any individual pair of species is highly stochastic, we find that integrating assembly processes allows broad variation in the incidence and extent of coexistence to be predicted with reasonable accuracy. Our findings demonstrate how phylogenetic data coupled with environmental factors and functional traits can begin to clarify the multi-layered processes shaping the distribution of biodiversity at large spatial scales.PostprintPeer reviewe

    The European Photon Imaging Camera on XMM-Newton: The MOS Cameras

    Get PDF
    The EPIC focal plane imaging spectrometers on XMM-Newton use CCDs to record the images and spectra of celestial X-ray sources focused by the three X-ray mirrors. There is one camera at the focus of each mirror; two of the cameras contain seven MOS CCDs, while the third uses twelve PN CCDs, defining a circular field of view of 30 arcmin diameter in each case. The CCDs were specially developed for EPIC, and combine high quality imaging with spectral resolution close to the Fano limit. A filter wheel carrying three kinds of X-ray transparent light blocking filter, a fully closed, and a fully open position, is fitted to each EPIC instrument. The CCDs are cooled passively and are under full closed loop thermal control. A radio-active source is fitted for internal calibration. Data are processed on-board to save telemetry by removing cosmic ray tracks, and generating X-ray event files; a variety of different instrument modes are available to increase the dynamic range of the instrument and to enable fast timing. The instruments were calibrated using laboratory X-ray beams, and synchrotron generated monochromatic X-ray beams before launch; in-orbit calibration makes use of a variety of celestial X-ray targets. The current calibration is better than 10% over the entire energy range of 0.2 to 10 keV. All three instruments survived launch and are performing nominally in orbit. In particular full field-of-view coverage is available, all electronic modes work, and the energy resolution is close to pre-launch values. Radiation damage is well within pre-launch predictions and does not yet impact on the energy resolution. The scientific results from EPIC amply fulfil pre-launch expectations.Comment: 9 pages, 11 figures, accepted for publication in the A&A Special Issue on XMM-Newto

    High resolution study of the Lambda p final state interaction in the reaction p + p -> K+ + (Lambda p)

    Full text link
    The reaction pp -> K+ + (Lambda p) was measured at Tp=1.953 GeV and Theta = 0 deg with a high missing mass resolution in order to study the Lambda p final state interaction. The large final state enhancement near the Lambda p threshold can be described using the standard Jost-function approach. The singlet and triplet scattering lengths and effective ranges are deduced by fitting simultaneously the Lambda p invariant mass spectrum and the total cross section data of the free Lambda p scattering.Comment: submitted to Physics Letters B, 10 pages, 3 figure

    Avian seed dispersal may be insufficient for plants to track future temperature change on tropical mountains

    Get PDF
    [Aim] Climate change causes shifts in species ranges globally. Terrestrial plant species often lag behind temperature shifts, and it is unclear to what extent animal-dispersed plants can track climate change. Here, we estimate the ability of bird-dispersed plant species to track future temperature change on a tropical mountain.[Location] Tropical elevational gradient (500–3500 m.a.s.l.) in the Manú biosphere reserve, Peru. [Time period] From 1960–1990 to 2061–2080. [Taxa] Fleshy-fruited plants and avian frugivores. [Methods] Using simulations based on the functional traits of avian frugivores and fruiting plants, we quantified the number of long-distance dispersal (LDD) events that woody plant species would require to track projected temperature shifts on a tropical mountain by the year 2070 under different greenhouse gas emission scenarios [representative concentration pathway (RCP) 2.6, 4.5 and 8.5]. We applied this approach to 343 bird-dispersed woody plant species. [Results] Our simulations revealed that bird-dispersed plants differed in their climate-tracking ability, with large-fruited and canopy plants exhibiting a higher climate-tracking ability. Our simulations also suggested that even under scenarios of strong and intermediate mitigation of greenhouse gas emissions (RCP 2.6 and 4.5), sufficient upslope dispersal would require several LDD events by 2070, which is unlikely for the majority of woody plant species. Furthermore, the ability of plant species to track future changes in temperature increased in simulations with a low degree of trait matching between plants and birds, suggesting that plants in generalized seed-dispersal systems might be more resilient to climate change. [Main conclusion] Our study illustrates how the functional traits of plants and animals can inform predictive models of species dispersal and range shifts under climate change and suggests that the biodiversity of tropical mountain ecosystems is highly vulnerable to future warming. The increasing availability of functional trait data for plants and animals globally will allow parameterization of similar models for many other seed-dispersal systems.Fieldwork at Manú was conducted under the permits 041-2010-AG-DGFFSDGEFFS, 008-2011-AG-DGFFS-DGEFFS, 01-C/C-2010SERNANP-JPNM and 01-2011-SERNANP-PNM-JEF and supported by a scholarship from the German Academic Exchange Service to D.M.D. D.M.D. acknowledges funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant number 787638) and the Swiss National Science Foundation (grant number 173342), both awarded to C. H. Graham. W.D.K. acknowledges a Global Ecology grant from the University of Amsterdam Faculty Research Cluster. I.D. was funded by the Alexander von Humboldt Foundation and is now supported by the Balearic Government. S.A.F. was funded by the German Research Foundation (DFG; FR 3246/2-2) and the Leibniz Competition of the Leibniz Association (P52/2017)
    • …
    corecore