29 research outputs found

    Un sistema di micropagamenti su piattaforma Ethereum per il wireless roaming

    Get PDF
    Questo progetto di tesi tratta le tematiche relative al mondo della blockchain adottato da applicazioni decentralizzate. Nello specifico viene progettato e analizzato un sistema di gestione di microtransazioni applicato a un modello simulato in cui un utente attraverso il proprio device può connettersi a pagamento alla rete Wi-Fi di un router. L'alta richiesta di transazioni mette in luce uno dei problemi principali dei pagamenti decentralizzati tramite criptovalute, ossia il problema della scalabilità relativo al grande numero di transazioni al secondo. Tale progetto propone una soluzione tramite payment channel per ridurre le richieste, spostando queste ultime fuori dalla blockchain adottando un sistema messaggistico a multi firma per proteggere e convalidare i dati tramite algoritmi crittografici. Il sistema viene gestito da smart contracts, ossia dei contratti digitali tra due o più parti che definiscono le clausole da rispettare per la corretta esecuzione del processo

    PLUMED: a portable plugin for free-energy calculations with molecular dynamics

    Get PDF
    Here we present a program aimed at free-energy calculations in molecular systems. It consists of a series of routines that can be interfaced with the most popular classical molecular dynamics (MD) codes through a simple patching procedure. This leaves the possibility for the user to exploit many different MD engines depending on the system simulated and on the computational resources available. Free-energy calculations can be performed as a function of many collective variables, with a particular focus on biological problems, and using state-of-the-art methods such as metadynamics, umbrella sampling and Jarzynski-equation based steered MD. The present software, written in ANSI-C language, can be easily interfaced with both fortran and C/C++ codes.Comment: to be submitted to Computer Physics Communication

    Accurate multiple time step in biased molecular simulations

    Get PDF
    Many recently introduced enhanced sampling techniques are based on biasing coarse descriptors (collective variables) of a molecular system on the fly. Sometimes the calculation of such collective variables is expensive and becomes a bottleneck in molecular dynamics simulations. An algorithm to treat smooth biasing forces within a multiple time step framework is here discussed. The implementation is simple and allows a speed up when expensive collective variables are employed. The gain can be substantial when using massively parallel or GPU-based molecular dynamics software. Moreover, a theoretical framework to assess the sampling accuracy is introduced, which can be used to assess the choice of the integration time step in both single and multiple time step biased simulations

    Hyperactive HRAS dysregulates energetic metabolism in fibroblasts from patients with Costello syndrome via enhanced production of reactive oxidizing species

    Get PDF
    Germline-activating mutations in HRAS cause Costello syndrome (CS), a cancer prone multisystem disorder characterized by reduced postnatal growth. In CS, poor weight gain and growth are not caused by low caloric intake. Here, we show that constitutive plasma membrane translocation and activation of the GLUT4 glucose transporter, via reactive oxygen species-dependent AMP-activated protein kinase α and p38 hyperactivation, occurs in primary fibroblasts of CS patients, resulting in accelerated glycolysis and increased fatty acid synthesis and storage as lipid droplets. An accelerated autophagic flux was also identified as contributing to the increased energetic expenditure in CS. Concomitant inhibition of p38 and PI3K signaling by wortmannin was able to rescue both the dysregulated glucose intake and accelerated autophagic flux. Our findings provide a mechanistic link between upregulated HRAS function, defective growth and increased resting energetic expenditure in CS, and document that targeting p38 and PI3K signaling is able to revert this metabolic dysfunction.n

    Enhanced sampling in molecular dynamics using metadynamics, replica-exchange, and temperature-acceleration

    Get PDF
    We review a selection of methods for performing enhanced sampling in molecular dynamics simulations. We consider methods based on collective variable biasing and on tempering, and offer both historical and contemporary perspectives. In collective-variable biasing, we first discuss methods stemming from thermodynamic integration that use mean force biasing, including the adaptive biasing force algorithm and temperature acceleration. We then turn to methods that use bias potentials, including umbrella sampling and metadynamics. We next consider parallel tempering and replica-exchange methods. We conclude with a brief presentation of some combination methods. \ua9 2013 by the author; licensee MDPI, Basel, Switzerland
    corecore